■正五角形と正十七角形(その19)

 (その8)(その9)を再検.

[1]sin(2π/7)+sin(4π/7)+sin(8π/7)

=−sin(π/7)+sin(3π/7)+sin(5π/7)=S

 正弦の和公式において,α=π/(2n+1)とおくと,

  Σsin(2k−1)π/(2n+1)=sin^2nπ/(2n+1)/sinπ/(2n+1)

[2]sin(π/7)+sin(3π/7)+sin(5π/7)=sin^23π/7/sinπ/7=(−4sin^3π/7+3sinπ/7)^2/sinπ/7=16sin^5π/7−24sin^3π/7+9sinπ/7

[3] [2]−[1]=2sin(π/7)=16sin^5π/7−24sin^3π/7+9sinπ/7−S

[4]sinπ/7=xとおくと

  16x^5−24x^3+7x−S=0

  32x^5−48x^3+14x−√7=0

[5]x=0.433883のとき,

  32x^5−48x^3+14x−√7=0が成り立つ.

===================================