■ある無限級数(その114)

 sinx/x=(1−x^2/π^2)(1−x^2/4π^2)(1−x^2/9π^2)・・・に対して,

 sin2x/2x=sinx/x・cosx

より

 cosx=(1−4x^2/π^2)(1−4x^2/9π^2)(1−4x^2/25π^2)

===================================

(1−4/1)(1−4/9)(1−4/25)・・・(1−4/n^2)

=(−1・3/1・1)・(1・5/3・3)・(3・7)/(5・5)・・・(2n−3)(2n+1)/(2n−1)(2n−1)

=−(2n+1)/(2n−1)→−1

 同様に

(1−16/1)(1−16/9)(1−16/25)(1−16/49)・・・=1

===================================