■両替問題(その9)
(その7)(その8)では漸化式を用いたが,母関数を用いると・・・
===================================
(1−x)^-1=A0+A1x+A2x^2+・・・
(1−x)^-1(1−x^5)^-1=B0+B1x+B2x^2+・・・
(1−x)^-1(1−x^5)^-1(1−x^10)^-1=C0+C1x+C2x^2+・・・
(1−x)^-1(1−x^5)^-1(1−x^10)^-1(1−x^25)^-1=D0+D1x+D2x^2+・・・
(1−x)^-1(1−x^5)^-1(1−x^10)^-1(1−x^25)^-1(1−x^50)^-1=E0+E1x+E2x^2+・・・
A0+A1x+A2x^2+・・・=(B0+B1x+B2x^2+・・・)(1−x^5)
より
Bn=An+Bn-5
同様に
Cn=Bn+Cn-10
Dn=Cn+Dn-25
En=Dn+En-50
A0=B0=C0=D0=E0=1
A1=A2=A3=・・・=1
===================================