■ある無限級数(その98)

 グレゴリー・ライプニッツ級数

  1/1−1/3+1/5−1/7+1/9−1/11+・・・=π/4

を超幾何関数で表してみたい.

===================================

 r=0,すなわち,第0項から始まるものとして

  x^n/(2n+1)−x^n+1/(2n+3)+・・・

 この級数の項比は

  an+1x^n+1/anx^n=-(n+1)(2n+1)/(2n+3)*x/(n+1)

であるから,a0*2F1(1,1/2;3/2;-1),また,a0=1より

  2F1(1,1/2;3/2;-1)

===================================

 鈴鹿高専・電子情報工学科の奥井重彦先生より頂戴した

  「超幾何関数の公式集(Tables of Hypergeometric Functions)」

によると

  2F1(1,1/2;3/2;x^2)=1/x・arctanh(x)

  2F1(1,1/2;3/2;-x^2)=1/x・arctan(x)

であるから,

  2F1(1,1/2;3/2;-1)=arctan(1)=π/4

===================================