■グレゴリー・ライプニッツ級数とオイラーの計算(その9)
同様に
[1] Πp^4/(p^4−1)=Π1/(1−1/p^4)
=ζ(4)=π^4/90
[2] Π(p^4+1)/(p^4−1)=7/6
ですから,
[3] Πp^4/(p^4+1)=π^4/105=ζ(8)/ζ(4)
が求められます.
===================================
[3]の(証)
Πp^4/(p^4+1)=Πp^4(p^4−1)/(p^8−1)
={Πp^8/(p^8−1)}/{Πp^4/(p^4−1)}
=ζ(8)/ζ(4)=(π^8/9450)/(π^4/90)=π^4/105
===================================