■葉序らせん(その108)
そのまえに,座標軸を変えることを検討してみたい.対辺の中点と正三角形面の頂点を結んでみると
A(1/2,0,0)
B(−1/2,0,0)
C(0,√3/2,0)
D(0,y,z)
O(0,Y,0)
AD^2=1/4+y^2+z^2=1
CD^2=(y−√3/2)^2+z^2=4b^2
y^2−√3y+3/4+z^2=4b^2
y^2−√3y+3/4+(3/4−y^2)=4b^2
−√3y+3/2=4b^2
y=(3/2−4b^2)/√3
z^2=3/4−y^2
===================================
y軸の回りに回転させると
A(c/2,0,s/2)
B(−c/2,0,−s/2)
C(0,√3/2,0)
D(−zs,y,zc)
O(0,Y,0)
AO^2=Y^2+c^2/4
CO^2=(Y−√3/2)^2
DO^2=(Y−y)^2+z^2s^2
c^2/4+√3Y−3/4=0,c^2=−4√3Y+3
−√3Y+3/4+2yY−y^2−z^2(1−c^2)=0
−√3Y+3/4+2yY−y^2−z^2(−2+4√3Y)=0
(−√3+2y)Y−4√3z^2Y+3/4−y^2+2z^2=0
(−√3+2y−4√3z^2)Y+3z^2=0
Yが求まる.c^2,s^2も求まる.
===================================
b=1/2のとき,y=1/2√3,z^2=2/3
Y=−2/(−√3+√3/3−8√3/3)=2/(10√3/3)
=√3/5
c^2=−4√3Y+3=3/5,s^2=2/5
===================================