■葉序らせん(その108)

 そのまえに,座標軸を変えることを検討してみたい.対辺の中点と正三角形面の頂点を結んでみると

  A(1/2,0,0)

  B(−1/2,0,0)

  C(0,√3/2,0)

  D(0,y,z)

  O(0,Y,0)

 AD^2=1/4+y^2+z^2=1

 CD^2=(y−√3/2)^2+z^2=4b^2

y^2−√3y+3/4+z^2=4b^2

y^2−√3y+3/4+(3/4−y^2)=4b^2

−√3y+3/2=4b^2

y=(3/2−4b^2)/√3

z^2=3/4−y^2

===================================

 y軸の回りに回転させると

  A(c/2,0,s/2)

  B(−c/2,0,−s/2)

  C(0,√3/2,0)

  D(−zs,y,zc)

  O(0,Y,0)

AO^2=Y^2+c^2/4

CO^2=(Y−√3/2)^2

DO^2=(Y−y)^2+z^2s^2

c^2/4+√3Y−3/4=0,c^2=−4√3Y+3

−√3Y+3/4+2yY−y^2−z^2(1−c^2)=0

−√3Y+3/4+2yY−y^2−z^2(−2+4√3Y)=0

(−√3+2y)Y−4√3z^2Y+3/4−y^2+2z^2=0

(−√3+2y−4√3z^2)Y+3z^2=0

Yが求まる.c^2,s^2も求まる.

===================================

 b=1/2のとき,y=1/2√3,z^2=2/3

 Y=−2/(−√3+√3/3−8√3/3)=2/(10√3/3)

=√3/5

c^2=−4√3Y+3=3/5,s^2=2/5

===================================