■葉序らせん(その97)

−4xξ+b^2s^2−c^2/4=0を代入して,ξを消去する.

ξ=(b^2s^2−c^2/4)/4x=(b^2s^2−(1−s^2)/4)/4x

={(b^2+1/4)s^2−1/4}/4x

={(4b^2+1)s^2−1}/16x

(−x^2+ξ^2)−K(x^2+ξ^2+1/8)−K(b^2s^2/2−1/8)=bsc/2

−(1+K)x^2+(1−K)ξ^2−Kb^2s^2/2=bsc/2

−(1+K)x^2+(1−K){(4b^2+1)^2s^4−2(4b^2+1)s^2+1}/256x^2−Kb^2s^2/2=bsc/2

−(1+K)256x^4+(1−K){(4b^2+1)^2s^4−2(4b^2+1)s^2+1}−128x^2Kb^2s^2=128x^2bsc

4次方程式で,解析的に求められそうにない.

===================================