■葉序らせん(その83)
xy平面への投影を考えて,z軸方向からみて頂点が載る同心円の中心を求める.
OA=OC=ODより,
Y^2+b^2s^2=(Y−h)^2=(Y−y)^2+x^2c^2
Y^2+b^2s^2=Y^2−2yY+y^2+x^2c^2=Y^2−2hY+h^2
2yY=y^2+x^2c^2−b^2s^2
2hY=h^2−b^2s^2
h(y^2+x^2c^2−b^2s^2)=y(h^2−b^2s^2)
h(y^2+x^2−x^2s^2−b^2s^2)=y(h^2−b^2s^2)
(−hx^2−hb^2+yb^2)s^2=yh^2−h(x^2+y^2)
h^2+b^2=1
x^2+y^2=h^2
b^2=−2hy+h^2
y=(h^2−b^2)/2h=(2h^2−1)/2h
y^2=(2h^2−1)^2/4h^2
x^2=h^2−y^2
−b^2=x^2+y^2−1
を代入すると
y−h=−1/2h
(−hx^2+(y−h)b^2)s^2=yh^2−h(x^2+y^2)=h^2(y−h)
(−hx^2−b^2/2h)s^2=−h/2
s^2=−1/2(−x^2−b^2/2h^2)
y/h−1=−1/2h^2より
s^2=−1/2{(y/h−1)b^2−x^2}
Y=(h^2−b^2s^2)/2h
これより,s^2,c^2,Yは求められる.
===================================
A(−bs,−Y,bc)
B(bs,−Y,bc)
C(0,h−Y,0)
D(cx,y−Y,sx)
E(−cx,y−Y,−sx)
F(αc−γs,β−Y,αs+γc)
G(ξc−ζs,η−Y,ξs+ζc)
O(0,0,0)として,
cos(∠AOC)=cos(∠AOD)を求めればよい.
cos(∠AOC)=−Y(h−Y)/(b^2s^2+Y^2)^1/2・(h−Y)
=−Y/(b^2s^2+Y^2)^1/2
===================================
[まとめ]4頂点が投影面の上で同心円に載ることは保証されているが,そこに5番目の頂点が載るという条件にはなっていない.正四面体の場合は5番目の頂点も同心円に載ることが確認されている.
===================================