(その76)の計算では
A(x,0,-b)
D(x,0,b)
C(-x,1/2,0)
B(-x,-1/2,0)
A(x,bs,-bc)
D(x,-bs,bc)
C(-x,c/2,s/2)
B(-x,-c/2,-s/2)
O(ξ,0,0)
A(x-ξ,bs,-bc)
D(x-ξ,-bs,bc)
C(-x-ξ,c/2,s/2)
B(-x-ξ,-c/2,-s/2)
E(α-ξ,-γs,γc)
O(0,0,0)
===================================
cos(∠COD)=(-x^2+ξ^2-bsc/2)/{((x-ξ)^2+b^2s^2)((x+ξ)^2+c^2/4)}^1/2
cos(∠BOC)=((x+ξ)^2-c^2/4)/((x+ξ)^2+c^2/4))
cos(∠AOB)=(-x^2+ξ^2-bsc/2)/{((x-ξ)^2+b^2s^2)((x+ξ)^2+c^2/4)}^1/2
cos(∠AOD)=((x-ξ)^2-b^2s^2)/((x-ξ)^2+s^2))
cos(∠AOC)=(-x^2+ξ^2+bsc/2)/{((x-ξ)^2+b^2s^2)((x+ξ)^2+c^2/4)}^1/2
cos(∠BOD)=(-x^2+ξ^2+bsc/2)/{((x-ξ)^2+b^2s^2)((x+ξ)^2+c^2/4)}^1/2
cos(∠DOE)=((x-ξ)(α-ξ)+bγs^2)/{(x-ξ)^2+b^2s^2)((α-ξ)^2+γ^2s^2)}^1/2
∠COD=∠AOB,∠AOC=∠BODとなる.
===================================