■葉序らせん(その47)
y軸の回りに回転させると
A(−bs,0,bc)
B(bs,0,bc)
C(0,h,0)
D(xc,y,xs)
E(−xc,y,xs)
F(αc−γs,β,αs+γc)
G(ξc−ζs,η,ξs+ζc)
O(0,Y,0)
AO^2=Y^2+b^2s^2
BO^2=Y^2+b^2s^2
CO^2=(Y−h)^2
DO^2=(Y−y)^2+x^2c^2
EO^2=(Y−y)^2+x^2c^2
FO^2=(Y−β)^2+(αc−γs)^2
GO^2=(Y−η)^2+(ξc−ηs)^2
===================================
DE,CGは
(Y−y)^2+x^2c^2
=(Y−h)^2
=(Y−η)^2+(ξc−ηs)^2
Y^2−2yY+y^2+x^2c^2
=Y^2−2hY+h^2
−2(y−h)Y+y^2+x^2c^2−h^2=0
===================================
AC,CFは
Y^2+b^2s^2=(Y−h)^2=(Y−β)^2+(αc−γs)^2
Y^2+b^2s^2=Y^2−2hY+h^2
2hY=h^2−b^2s^2
Y=(h^2−b^2s^2)/2hを
−2(y−h)Y+y^2+x^2c^2−h^2=0に代入すると
(y/h−1)(b^2s^2−h^2)+y^2+x^2c^2−h^2=0
(y/h−1)b^2s^2−h^2(y/h−1)+y^2+x^2c^2−h^2=0
(y/h−1)b^2s^2−hy+y^2+x^2(1−s^2)=0
{(y/h−1)b^2−x^2}s^2−hy+y^2+x^2=0
{(y/h−1)b^2−x^2}s^2−(2h^2−1)/2+h^2=0
s^2=−1/2{(y/h−1)b^2−x^2}
これより,s^2,c^2,Yは求められる.
A(−bs,−Y,bc)
B(bs,−Y,bc)
C(0,h−Y,0)
D(cx,y−Y,sx)
E(−cx,y−Y,sx)
F(αc−γs,β−Y,αs+γc)
G(ξc−ζs,η−Y,ξs+ζc)
O(0,0,0)として,cos(∠AOC)を求めればよい.
===================================