■葉序らせん(その47)

 y軸の回りに回転させると

  A(−bs,0,bc)

  B(bs,0,bc)

  C(0,h,0)

  D(xc,y,xs)

  E(−xc,y,xs)

  F(αc−γs,β,αs+γc)

  G(ξc−ζs,η,ξs+ζc)

  O(0,Y,0)

AO^2=Y^2+b^2s^2

BO^2=Y^2+b^2s^2

CO^2=(Y−h)^2

DO^2=(Y−y)^2+x^2c^2

EO^2=(Y−y)^2+x^2c^2

FO^2=(Y−β)^2+(αc−γs)^2

GO^2=(Y−η)^2+(ξc−ηs)^2

===================================

 DE,CGは

 (Y−y)^2+x^2c^2

=(Y−h)^2

=(Y−η)^2+(ξc−ηs)^2

Y^2−2yY+y^2+x^2c^2

=Y^2−2hY+h^2

−2(y−h)Y+y^2+x^2c^2−h^2=0

===================================

 AC,CFは

  Y^2+b^2s^2=(Y−h)^2=(Y−β)^2+(αc−γs)^2

Y^2+b^2s^2=Y^2−2hY+h^2

2hY=h^2−b^2s^2

Y=(h^2−b^2s^2)/2hを

−2(y−h)Y+y^2+x^2c^2−h^2=0に代入すると

(y/h−1)(b^2s^2−h^2)+y^2+x^2c^2−h^2=0

(y/h−1)b^2s^2−h^2(y/h−1)+y^2+x^2c^2−h^2=0

(y/h−1)b^2s^2−hy+y^2+x^2(1−s^2)=0

{(y/h−1)b^2−x^2}s^2−hy+y^2+x^2=0

{(y/h−1)b^2−x^2}s^2−(2h^2−1)/2+h^2=0

s^2=−1/2{(y/h−1)b^2−x^2}

これより,s^2,c^2,Yは求められる.

  A(−bs,−Y,bc)

  B(bs,−Y,bc)

  C(0,h−Y,0)

  D(cx,y−Y,sx)

  E(−cx,y−Y,sx)

  F(αc−γs,β−Y,αs+γc)

  G(ξc−ζs,η−Y,ξs+ζc)

  O(0,0,0)として,cos(∠AOC)を求めればよい.

===================================