■葉序らせん(その29)
A(0,0,1/2)
B(0,0,−1/2)
C(0,√3/2,0)
D(√(2/3),√3/6,0)
E(−√(2/3),√3/6,0)
正四面体を2個一組(重三角錐)として考えた場合,連結面は△ACDである.
===================================
△ACDの重心Hは
H(√(2/3)/3,2√3/9,1/6)
F(α,β,γ)はB+2BHで与えられる.
BH=(√(2/3)/3,2√3/9,1/6+1/2)
=(√6/9,2√3/9,6/9)
2BH=(2√6/9,4√3/9),12/9)
B+2BH=(2√6/9,4√3/9,5/6)=(α,β,γ)
ここまでは合っている.
===================================
A(−s/2,0,c/2)
B(s/2,0,c/2)
C(0,√3/2,0)
D(c√(2/3),√3/6,s√(2/3))
E(−c√(2/3),√3/6,s√(2/3))
A(−s/2,0,c/2)
C(0,√3/2,0)
D(c√(2/3),√3/6,s√(2/3))
F(αc−γs,β,αs+γc)
G(ξc−ζs,η,ξs+ζc)
O(0,y,0)
AO^2=y^2+s^2/4
BO^2=y^2+s^2/4
CO^2=(y−√3/2)^2
DO^2=(y−√3/6)^2+2c^2/3
EO^2=(y−√3/6)^2+2c^2/3
FO^2=(y−β)^2+(αc−γs)^2
GO^2=(y−η)^2+(ξc−ηs)^2
===================================