■シチャーマンのサイコロ(その7)
2個のサイコロを投げるとき,その目の和が2〜12になる場合の数は
(1,2,3,4,5,6,5,4,3,2,1)
{2,3,4,5,6,7,8,9,10,11,12}
さらに3個目のサイコロを投げるとその目の和が3〜18になる場合の数は
(1,2,3,4,5,6,5,4,3,2,1) x
(1,2,3,4,5,6,5,4,3,2,1) x^2
(1,2,3,4,5,6,5,4,3,2,1) x^3
(1,2,3,4,5,6,5,4,3,2,1) x^4
(1,2,3,4,5,6,5,4,3,2,1) x^5
(1,2,3,4,5,6,5,4,3,2,1)x^6
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(1,3,6,10,15,21,25,27,27,25,21,15,10,6,3,1)
{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}
===================================
一般に,n個のサイコロを投げるとき,その目の和がkにのなる場合の数は?
P(x)=x+x^2+x^3+x^4+x^5+x^6
{P(x)}^n=(x+x^2+x^3+x^4+x^5+x^6)^n
=x^n(1−x^6)^n/(1−x)^n
ここで,
(1−x^6)^n=Σ(−1)^k(n,k)x^6k
(1−x)^-n=1+nx+n(n+1)x^2/2!+n(n+1)(n+2)x^3/3!+・・・
===================================