■サマーヴィルの等面四面体(その257)
G6のP5から,P1P2,P2P3,P3P4方向に伸長させた点をP0とする.
[1]P5+P1P2方向(5/√10,√14/2,0,0)
P0(11/√10,√14/2,42/√560,21/√84)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=121/10+14/4+63/20+21/4 (NG) P2P0^2=36/10+63/20+21/4=12
P3P0^2=1/10+14/4+63/20+21/4=12
P4P0^2=9/10+14/4+7/20+21/4=10
P5P0^2=25/10+14/4=6
[2]P5−P1P2方向(−5/√10,−√14/2,0,0)
P0(1/√10,−√14/2,42/√560,21/√84)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=1/10+14/4+63/20+21/42=12
P2P0^2=16/10+14+63/20+21/4 (NG)
[3]P5+P2P3方向(5/√10,−√14/2,0,0)
P0(11/√10,−√14/2,42/√560,21/√84)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=121/10+14/4+63/20+21/4 (NG)
[4]P5−P2P3方向(5/√10,−√14/2,0,0)
P0(11/√10,−√14/2,42/√560,21/√84)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=121/10+・・・ (NG)
[5]P5+P3P4方向(−2/√10,0,56/√560,0)
P0(4/√10,0,98/√560,21/√84)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=16/10+343/20+21/4 (NG)
[6]P5−P3P4方向(−2/√10,0,56/√560,0)
P0(4/√10,0,98/√560,21/√84)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=16/10+343/20+21/4 (NG)
またしても解が見つからない.
===================================