■サマーヴィルの等面四面体(その256)
G6のP4から,P1P2,P2P3方向に伸長させた点をP0とする.
[1]P4+P1P2方向(5/√10,√14/2,0,0)
P0(13/√10,√14/2,56/√560,0)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=169/10+14/4+56/10 (NG)
[2]P4−P1P2方向(−5/√10,−√14/2,0,0)
P0(3/√10,−√14/2,56/√560,0)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=9/10+14/4+56/10=10
P2P0^2=4/10+14+56/10 (NG)
[3]P4+P2P3方向(5/√10,−√14/2,0,0)
P0(13/√10,−√14/2,0,0)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=169/10+14/4 (NG)
[4]P4−P2P3方向(−5/√10,√14/2,0,0)
P0(3/√10,√14/2,56/√560,0)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=9/10+14/4+56/10=10
P2P0^2=4/10+56/10=6
P3P0^2=49/10+14/4+56/10=14 (NG)
===================================