■サマーヴィルの等面四面体(その255)
G6のP3から,P1P2,P4P5方向に伸長させた点をP0とする.
[1]P3+P1P2方向(5/√10,√14/2,0,0)
P0(15/√10,√14/2,0,0)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=225/10+14/4 (NG)
[2]P3−P1P2方向(−5/√10,−√14/2,0,0)
P0(5/√10,−√14/2,0,0)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=25/10+14/4=6
P2P0^2=14 (NG)
[3]P3+P4P5方向(−2/√10,0,−14/√560,21/√84)
P0(8/√10,0,−14/√560,21/√84)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=64/10+7/20+21/4=12
P2P0^2=9/10+14/4+7/20+21/4=10
P3P0^2=4/10+7/20+21/4=6
P4P0^2=7/8+21/4 (NG)
P5P0^2=4/10+56/10=6
[4]P3−P4P5方向(2/√10,0,14/√560,−21/√84)
P0(12/√10,0,14/√560,−21/√84)
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,56/√560,0)
P5(6/√10,0,42/√560,21/√84)
P1P0^2=144/10+7/20+21/4 (NG)
===================================