■サマーヴィルの等面四面体(その249)
P1(0,0,0,0,0)
P2(5/√10,(√14)/2,0,0,0)
P3(10/√10,0,0,0,0)
P4(8/√10,0,56/√560,0,0)
P5(6/√10,0,42/√560,√21/2,0)
P6(a,b,c,d,e)とおくと
a^2+b^2+c^2+d^2+e^2=10
(a−5/√10)^2+(b−√14/2)^2+c^2+d^2+e^2=12
(a−10/√10)^2+b^2+c^2+d^2+e^2=12
(a−8/√10)^2+b^2+(c−56/√560)^2+d^2+e^2=10
(a−6/√10)^2+b^2+(c−42/√560)^2+(d−√21/2)^2+e^2=6
(a−√10)^2+10−a^2=12
−2a√10+20=12→a=4/√10
b^2+c^2+d^2+e^2=10−16/10=84/10
1/10+(b−√14/2)^2+84/10−b^2=12
−2・√14/2・b+14/4+85/10=12
−2・√14/2・b=0,b=0
c^2+d^2+e^2=84/10
(a−8/√10)^2+b^2+(c−√56/√10)^2+d^2+e^2=10
16/10+(c−√56/√10)^2+84/10−c^2=10
−√56/√10・c=−28/10
c=28/√560=7/√35=√(7/5)
d^2+e^2=84/10−14/10=7
(a−6/√10)^2+b^2+(c−42/√560)^2+(d−√21/2)^2+e^2=6
4/10+196/560+(d−√21/2)^2+7−d^2=6
−2・√21/2・d+8/20+7/20+105/20+7=6
−√21・d/=−7,d=7/√21=√(7/3)
e^2=7−7/3=14/3
===================================