■サマーヴィルの等面四面体(その249)

P1(0,0,0,0,0)

P2(5/√10,(√14)/2,0,0,0)

P3(10/√10,0,0,0,0)

P4(8/√10,0,56/√560,0,0)

P5(6/√10,0,42/√560,√21/2,0)

P6(a,b,c,d,e)とおくと

  a^2+b^2+c^2+d^2+e^2=10

  (a−5/√10)^2+(b−√14/2)^2+c^2+d^2+e^2=12

  (a−10/√10)^2+b^2+c^2+d^2+e^2=12

  (a−8/√10)^2+b^2+(c−56/√560)^2+d^2+e^2=10

  (a−6/√10)^2+b^2+(c−42/√560)^2+(d−√21/2)^2+e^2=6

  (a−√10)^2+10−a^2=12

  −2a√10+20=12→a=4/√10

  b^2+c^2+d^2+e^2=10−16/10=84/10

  1/10+(b−√14/2)^2+84/10−b^2=12

  −2・√14/2・b+14/4+85/10=12

  −2・√14/2・b=0,b=0

  c^2+d^2+e^2=84/10

  (a−8/√10)^2+b^2+(c−√56/√10)^2+d^2+e^2=10

  16/10+(c−√56/√10)^2+84/10−c^2=10

  −√56/√10・c=−28/10

  c=28/√560=7/√35=√(7/5)

  d^2+e^2=84/10−14/10=7

  (a−6/√10)^2+b^2+(c−42/√560)^2+(d−√21/2)^2+e^2=6

  4/10+196/560+(d−√21/2)^2+7−d^2=6

  −2・√21/2・d+8/20+7/20+105/20+7=6

  −√21・d/=−7,d=7/√21=√(7/3)

  e^2=7−7/3=14/3

===================================