■サマーヴィルの等面四面体(その248)
△6を完成させておきたい.
n=6のとき
P0P1=P1P2=P2P3=P3P4=P4P5=P5P6=√6
P0P2=P1P3=P2P4=P3P5=P4P6=√10
P0P3=P1P4=P2P5=P3P6=√12
P0P4=P1P5=P2P6=√12
P0P5=P1P6=√10
P0P6=√6
===================================
P1(0,0,0,0)
P2(5/√10,(√14)/2,0,0)
P3(10/√10,0,0,0)
P4(8/√10,0,√56/√10,0)
P5(x,y,z,w)とおくと
x^2+y^2+z^2+w^2=12
(x−5/√10)^2+(y−√14/2)^2+z^2+w^2=12
(x−√10)^2+y^2+z^2+w^2=10
(x−8/√10)^2+y^2+(z−√56/√10)^2+w^2=6
(x−√10)^2+12−x^2=10
−2x√10+22=10→x=6/√10
y^2+z^2+w^2=12−36/10=84/10
1/10+(y−√14/2)^2+z^2+w^2=12
(y−√14/2)^2+84/10−y^2=119/10
−2y√14/2+70/20+168/20=238/20
−y√14=0→y=0
→z^2+w^2=84/10
(x−8/√10)^2+y^2+(z−√56/√10)^2+w^2=6
4/10+(z−√56/√10)^2+w^2=6
(z−√56/√10)^2+84/10−z^2=56/10
−2・√56/√10・z+56/10+84/10−z^2=56/10
−2・√56/√10・z=−84/10
z=42/√560=√63/√20
w^2=168/20−63/20=21/4
===================================