■サマーヴィルの等面四面体(その248)

 △6を完成させておきたい.

n=6のとき

  P0P1=P1P2=P2P3=P3P4=P4P5=P5P6=√6

  P0P2=P1P3=P2P4=P3P5=P4P6=√10

  P0P3=P1P4=P2P5=P3P6=√12

  P0P4=P1P5=P2P6=√12

  P0P5=P1P6=√10

  P0P6=√6

===================================

P1(0,0,0,0)

P2(5/√10,(√14)/2,0,0)

P3(10/√10,0,0,0)

P4(8/√10,0,√56/√10,0)

P5(x,y,z,w)とおくと

  x^2+y^2+z^2+w^2=12

  (x−5/√10)^2+(y−√14/2)^2+z^2+w^2=12

  (x−√10)^2+y^2+z^2+w^2=10

  (x−8/√10)^2+y^2+(z−√56/√10)^2+w^2=6

  (x−√10)^2+12−x^2=10

  −2x√10+22=10→x=6/√10

  y^2+z^2+w^2=12−36/10=84/10

  1/10+(y−√14/2)^2+z^2+w^2=12

  (y−√14/2)^2+84/10−y^2=119/10

  −2y√14/2+70/20+168/20=238/20

  −y√14=0→y=0

→z^2+w^2=84/10

  (x−8/√10)^2+y^2+(z−√56/√10)^2+w^2=6

  4/10+(z−√56/√10)^2+w^2=6

  (z−√56/√10)^2+84/10−z^2=56/10

  −2・√56/√10・z+56/10+84/10−z^2=56/10

  −2・√56/√10・z=−84/10

  z=42/√560=√63/√20

  w^2=168/20−63/20=21/4

===================================