■サマーヴィルの等面四面体(その201)
断面の形あるいは二面角を求めても,柱状空間充填性とは結びつかないかもしれないが,もう少し断面の形にこだわってみたい.
===================================
P0(1,0,√2)
P1(0,0,0)
P2(1,√2,0)
P3(2,0,0)
は,
P0P1=P1P2=P2P3=√3
P0P2=P1P3=2
P0P3=√3
を満たす.
P0(1/2,(√5)/2,0,(√10)/2)
P1(0,0,0,0)
P2(2,0,0,0)
P3(3/2,(√5)/2,(√10)/2,0)
P4(1,√5,0,0)
は
P0P1=P1P2=P2P3=P3P4=2
P0P2=P1P3=P2P4=√6
P0P3=P1P4=√6
P0P4=2
を満たす.
P0(√(1/2),0,√(1/2),1,√3)
P1(0,0,0,0,0)
P2(√2,√3,0,0,0)
P3(√8,0,0,0,0)
P4(√(9/2),0,√(9/2),0,0)
P5(√2,0,√2,2,0)
は
P0P1=P1P2=P2P3=P3P4=P4P5=√5
P0P2=P1P3=P2P4=P3P5=√8
P0P3=P1P4=P2P5=3
P0P4=P1P5=√8
P0P5=√5
を満たす.
P0(2/√3,0,0,0,√(7/6),√(7/6))
P1(0,0,0,0,0,0)
P2((√3)/2,(√7)/2,(√14)/2,0,0,0)
P3(√3,√7,0,0,0,0)
P4(9/√12,(√7)/2,0,(√14)/2,0,0)
P5(√12,0,0,0,0,0)
P6(4/√3,0,0,0,√(14/3),0)
は
P0P1=P1P2=P2P3=P3P4=P4P5=P5P6=√6
P0P2=P1P3=P2P4=P3P5=P4P6=√10
P0P3=P1P4=P2P5=P3P6=√12
P0P4=P1P5=P2P6=√12
P0P5=P1P6=√10
P0P6=√6
を満たす.
===================================