■サマーヴィルの等面四面体(その188)
P1P2=P2P3=P3P4=P4P5=√6
P1P3=P2P4=P3P5=√10
P1P4=P2P5=√12
P1P5=√12
P5から,P1P3,P2P4,P1P4方向に伸長させた点をP0とする.
===================================
[1]P5+P1P3方向(6/2√3,√7,0,0)
P0(18/2√3,√7,0,0)
P1(0,0,0,0)
P2(3/2√3,(√7)/2,(√14)/2,0)
P3(6/2√3,√7,0,0)
P4(9/2√3,(√7)/2,0,(√14)/2)
P5(12/2√3,0,0,0)
P1P0^2 (NG)
[2]P5−P1P3方向(−6/2√3,−√7,0,0)
P0(6/2√3,−√7,0,0)
P1(0,0,0,0)
P2(3/2√3,(√7)/2,(√14)/2,0)
P3(6/2√3,√7,0,0)
P4(9/2√3,(√7)/2,0,(√14)/2)
P5(12/2√3,0,0,0)
P3P0^2=28 (NG)
[3]P5+P2P4方向(6/2√3,0,−√14/2,√14/2)
P0(18/2√3,0,−√14/2,√14/2)
P1(0,0,0,0)
P2(3/2√3,(√7)/2,(√14)/2,0)
P3(6/2√3,√7,0,0)
P4(9/2√3,(√7)/2,0,(√14)/2)
P5(12/2√3,0,0,0)
P1P0^2 (NG)
[4]P5−P2P4方向(−6/2√3,0,√14/2,−√14/2)
P0(6/2√3,0,√14/2,−√14/2)
P1(0,0,0,0)
P2(3/2√3,(√7)/2,(√14)/2,0)
P3(6/2√3,√7,0,0)
P4(9/2√3,(√7)/2,0,(√14)/2)
P5(12/2√3,0,0,0)
P4P0^2 (NG)
[5]P5+P1P4方向(9/2√3,√7/2,0,√14/2)
P0(21/2√3,√7/2,0,√14/2)
P1(0,0,0,0)
P2(3/2√3,(√7)/2,(√14)/2,0)
P3(6/2√3,√7,0,0)
P4(9/2√3,(√7)/2,0,(√14)/2)
P5(12/2√3,0,0,0)
P1P0^2 (NG)
[6]P5−P1P4方向(−9/2√3,−√7/2,0,−√14/2)
P0(3/2√3,−√7/2,0,−√14/2)
P1(0,0,0,0)
P2(3/2√3,(√7)/2,(√14)/2,0)
P3(6/2√3,√7,0,0)
P4(9/2√3,(√7)/2,0,(√14)/2)
P5(12/2√3,0,0,0)
P4P0^2 (NG)
===================================