■サマーヴィルの等面四面体(その181)

 P3から,P1P2,P4P5方向に伸長させた点をP0とする.

[1]P3+P1P3方向(3/2√3,√7/2,√14/2,0)

P0(6/2√3,3√7/2,√14/2,0)

P1(0,0,0,0)

P2(3/2√3,(√7)/2,(√14)/2,0)

P3(6/2√3,√7,0,0)

P4(9/2√3,(√7)/2,0,(√14)/2)

P5(12/2√3,0,0,0)

  P1P0^2=36/12+63/4+14/4  (NG)

[2]P3−P1P3方向(−3/2√3,−√7/2,−√14/2,0)

P0(3/2√3,√7/2,−√14/2,0)

P1(0,0,0,0)

P2(3/2√3,(√7)/2,(√14)/2,0)

P3(6/2√3,√7,0,0)

P4(9/2√3,(√7)/2,0,(√14)/2)

P5(12/2√3,0,0,0)

  P1P0^2=9/12+7/4+14/4=6

  P2P0^2=14  (NG)

[3]P3+P4P5方向(3/2√3,−√7/2,0,−√14/2)

P0(9/2√3,√7/2,0,−√14/2)

P1(0,0,0,0)

P2(3/2√3,(√7)/2,(√14)/2,0)

P3(6/2√3,√7,0,0)

P4(9/2√3,(√7)/2,0,(√14)/2)

P5(12/2√3,0,0,0)

  P1P0^2=81/12+7/4+14/4=(81+63)/12=12

  P2P0^2=36/12+14/4+14/4=10

  P3P0^2=9/12+7/4+14/4=6

  P4P0^2=14  (NG)

[4]P3−P4P5方向(−3/2√3,√7/2,0,√14/2)

P0(3/2√3,3√7/2,0,√14/2)

P1(0,0,0,0)

P2(3/2√3,(√7)/2,(√14)/2,0)

P3(6/2√3,√7,0,0)

P4(9/2√3,(√7)/2,0,(√14)/2)

P5(12/2√3,0,0,0)

  P1P0^2=9/12+63/4+14/4  (NG)

===================================