■サマーヴィルの等面四面体(その181)
P3から,P1P2,P4P5方向に伸長させた点をP0とする.
[1]P3+P1P3方向(3/2√3,√7/2,√14/2,0)
P0(6/2√3,3√7/2,√14/2,0)
P1(0,0,0,0)
P2(3/2√3,(√7)/2,(√14)/2,0)
P3(6/2√3,√7,0,0)
P4(9/2√3,(√7)/2,0,(√14)/2)
P5(12/2√3,0,0,0)
P1P0^2=36/12+63/4+14/4 (NG)
[2]P3−P1P3方向(−3/2√3,−√7/2,−√14/2,0)
P0(3/2√3,√7/2,−√14/2,0)
P1(0,0,0,0)
P2(3/2√3,(√7)/2,(√14)/2,0)
P3(6/2√3,√7,0,0)
P4(9/2√3,(√7)/2,0,(√14)/2)
P5(12/2√3,0,0,0)
P1P0^2=9/12+7/4+14/4=6
P2P0^2=14 (NG)
[3]P3+P4P5方向(3/2√3,−√7/2,0,−√14/2)
P0(9/2√3,√7/2,0,−√14/2)
P1(0,0,0,0)
P2(3/2√3,(√7)/2,(√14)/2,0)
P3(6/2√3,√7,0,0)
P4(9/2√3,(√7)/2,0,(√14)/2)
P5(12/2√3,0,0,0)
P1P0^2=81/12+7/4+14/4=(81+63)/12=12
P2P0^2=36/12+14/4+14/4=10
P3P0^2=9/12+7/4+14/4=6
P4P0^2=14 (NG)
[4]P3−P4P5方向(−3/2√3,√7/2,0,√14/2)
P0(3/2√3,3√7/2,0,√14/2)
P1(0,0,0,0)
P2(3/2√3,(√7)/2,(√14)/2,0)
P3(6/2√3,√7,0,0)
P4(9/2√3,(√7)/2,0,(√14)/2)
P5(12/2√3,0,0,0)
P1P0^2=9/12+63/4+14/4 (NG)
===================================