■サマーヴィルの等面四面体(その178)

△6では

P0(2/√3,0,0,0,√(7/6),√(7/6))

P1(0,0,0,0,0,0)

P2((√3)/2,(√7)/2,(√14)/2,0,0,0)

P3(√3,√7,0,0,0,0)

P4(9/√12,(√7)/2,0,(√14)/2,0,0)

P5(√12,0,0,0,0,0)

P6(4/√3,0,0,0,√(14/3),0)

  P0P1=P1P2=P2P3=P3P4=P4P5=P5P6=√6

  P0P2=P1P3=P2P4=P3P5=P4P6=√10

  P0P3=P1P4=P2P5=P3P6=√12

  P0P4=P1P5=P2P6=√12

  P0P5=P1P6=√10

  P0P6=√6

===================================

 この4次元胞を考える.P1は残しておきたいので,P0,P6を消去する.

P1(0,0,0,0)

P2(3/2√3,(√7)/2,(√14)/2,0)

P3(6/2√3,√7,0,0)

P4(9/2√3,(√7)/2,0,(√14)/2)

P5(12/2√3,0,0,0)

  P1P2=P2P3=P3P4=P4P5=√6

  P1P3=P2P4=P3P5=√10

  P1P4=P2P5=√12

  P1P5=√12

 最短辺だけを検討したいので,伸長する方向は

  P1P2=P2P3=P3P4=P4P5=√6

のみである,

===================================