■サマーヴィルの等面四面体(その169)

 (その166)の続き.

{5,3,3}→42面体(正五角形12,六角形30)

===================================

P1(±2,±2,0,0)

P2(±√5,±1,±1,±1)

P3(±τ,±τ,±τ,±1/τ^2)

P4(±τ^2,±1/τ,±1/τ,±1/τ)

P5(±τ^2,±1,±1/τ^2,0)

P6(±√5,±1/τ,±τ,0)

P7(±2,±1,±τ,±1/τ)

辺の長さは2/τ^2

P1(0,0,±2,±2)

P5(0,±1/τ^2,±1,±τ^2)

P6(0,±1/τ,±τ,±√5)

P7(0,0,±1,±τ^2)

P8(0,±τ,±τ,±τ)

P9(0,±1/2,±τ^2/2,±3τ/2)

P10(0,±1/2τ,±τ√5/2,±(2+√5)/2)

P1P5^2=1/τ^4+1+(2−τ^2)^2=1/τ^4+τ^4−4τ^2+5

=12−4(τ+1)=8−4τ=4/τ^2・・・元の辺より長い

P1P6^2=1/τ^2+(2−τ)^2+(2−√5)^2=1/τ^2+τ^2−4τ+4+9−4√5

=16−4τ−4(2τ−1)=20−12τ=4/φ^4・・・元の辺と同じ

P1P7^2=1+(2−τ^2)^2=5−4τ^2+τ^4=5−4(τ+1)+3τ+2=3−τ=√5/τ

P1P8^2=τ^2+2(2−τ)^2=3τ^2−8τ+8=3(τ+1)−8τ+8=11−5τ

P6P7^2=1/τ^2+(τ−1)^2+(τ^2−√5)^2=2/τ^2+τ^4−2√5τ^2+5=2(−τ+2)+3τ+2−2√5(τ+1)+5

=9−2√5+τ−2√5τ

=11−2√5+τ−2(τ+2)=7−2√5−2τ

少しは良くなったが・・・

P9P10^2=1/4{(1−1/τ)^2+(τ^2−τ√5)^2+(3τ−2−√5)^2}

P9P10^2=1/4{(2−τ)^2+1^2+(τ−1)^2}

=(4−4τ+τ^2+1+τ^2−2τ+1)/4 =(6−6τ+2τ+2)/4=2−τ=1/τ^2・・・元の辺より短い

===================================