■ここ四半世紀に証明された定理
ミレニアムの節目をすぎても,リーマン予想,BSD予想,ホッジ予想,ポアンカレ予想,・・・などがまだ未解決のまま残されている.
「ζ(s)の零点がs=−2,−4,・・・,−2nとs=1/2+tiの線上にある」
というのが有名なリーマン予想であるが,数学における未解決問題のうち最も難しいものと考える人も多い.
これらの未解決の難問が,数学の研究に大きな役割を果たしてきたことはいうまでもないことである.ヒルベルトの言葉を借りれば,問題の欠乏は発展の停止を意味するのである.→[補]
残念ながら,数学の難問には述語の説明だけでも何頁もかかるものが多いし,その意義までとなると理解の欠如から説明困難であることも少なくない.それに対して,フェルマーの最終予想は中学生でも問題の意味が理解できるものである.
17世紀の数学者フェルマーが,3世紀の数学者ディオファントスの著書「算術」の欄外に記した書き込みに端を発するフェルマーの最終予想
「x^n+y^n=z^n (n≧3)は(0,0,0)以外の整数解をもたない」
は,1994年,ワイルズによって証明され,3世紀半の歴史に終止符が打たれた.その中には日本人数学者のアイディア,とりわけ,楕円曲線に関する谷山・志村予想が最も重要な役割を果たしたという経緯はご存知の方も多いだろう.これがミレニアムの変わり目の前になされた大きなエポックとなったことは間違いないところである.
また,20世紀のうちに解決された悪名高き難問に,四色問題
「任意の平面地図は高々4色で色分けできるか?」
がある.5色で色分けできることはヒーウッドによって100年以上も前から知られていたが,四色問題が肯定的に解決されたのは1970年代後半のことで,アペルとハーケンはコンピュータを使ってこの証明を成し遂げた.四色問題の証明は場合分けの数が膨大で,コンピュータによる解析に依存せざるを得なかったのである.
多くの数学者はこの証明においてコンピュータによる解析が本質的だと知ると落胆し,失望したと伝えられている.その証明は1995年にロバートソンによって改良されてかなり簡単になったとはいえ,いまだ手計算で証明を完成させた人はいない.ともあれ,四色問題がグラフ理論の発展に対する推進力となったことは確かである.
一方,数学の問題のなかにはまだこんなことがわかっていなかったのかと別の意味で驚かされるものもある.たとえば,コラム「シンク関数の数学的諸性質」で取り上げたn次元立方体の切り口の体積に関するボールの定理が証明されたのは1986年のことである.
今回のコラムでは未解決問題を取り上げる代わりに,20世紀の最後の四半世紀に証明された数学の定理
1)ヘールによるケプラー問題の証明
2)19四乗数定理
に関係する話題を(自分でわかる範囲で)いくつか取り上げて解説してみることにしたい.
===================================
【1】ケプラーの球体充填問題
1611年,ケプラーは,物質を構成する粒子は体積を最小とするように自己を組織化するだろうという構成原理を考えました.そこで,粒子が球形だと仮定して,さまざまな配置の空間充填率を計算してみました.ケプラーが最初に試みたのは,それぞれの球が6個の球に囲まれるように第1層を構成し,第2層は第1層のくぼみに球を置くという積み方です.
これは別の角度からみると,立方体の8個の頂点と6面の中心に球が配置されているところから,面心立方格子と呼ばれている配置ですが,この積み方は八百屋の店先でミカンなどの山を安定に積み上げるために使われている日常的な配置です.この場合の充填率は√2π/6(74.04%)になります.
他の配置と比較してみましょう.たとえば,下の層を正方形配列としその真上に球をのせていく単純立方格子の充填率はたったπ/6(53%)にすぎません.また,六方格子(第1層は面心立方格子と同じ正三角形配列だが,第2層は球の真上に球をのせる)の充填率は√3π/9(60%)であり,立方体の8個の頂点と中心に球を配置した体心立方格子の充填率は√3π/8(68%)です.こうして,さまざまな配置を調べてみたケプラーは,面心立方格子が最密充填構造であるという結論に達しました.
面心立方格子が最も密な球の充填方法だろうという予想は400年近く前のケプラーまでさかのぼります.日常の経験からしても,同じ大きさの球の最も効果的な配置問題は自明なものと考えてしまいがちで,直感的に面心立方格子をなす場合が最大に詰め込んだ配置のように思えます.しかしだからといって,無限にある可能性をすべてひっくるめて証明したわけではないので,これは定理ではなく予想にすぎません.ランダムな配置まで含めると,空間充填率が74.04%よりも引き上げられるかもしれないからです.
1958年,ロジャースが四面体配置から,空間充填率の上限を3√2(cos-11/3−π/3)=77.96%とはじき出しました.四面体配置は,3次元で相互に接するように球を配置するときの最大数となる配置ですが,全空間を充たすことはできないので,空間充填率の上限と考えられるわけです.
1988年には,この上限はわずかに改良され,77.84%よりも高密度の詰め込みは存在しないことが証明されています.これを74.04%まで引き下げることができれば,面心立方格子が最密充填構造だという証明になるのですが,残念ながら,上限の引き下げは骨の折れる厄介なプロセスであり,遅々として進みませんでした.
===================================
【2】ヘールによるケプラー問題の証明
ケプラーの問題については,大半の数学者がまず間違いないだろうと考え,すべての物理学者が当たり前だと思っていたのですが,面心立方格子が3次元空間における最密充填構造だという証明は,わずか数%の差であるにもかかわらず,また,何世紀にもわたる研究にもかかわらず未解決でした.
ケプラー予想は,1994年に解決されたフェルマーの最終定理に取って代わる数学上の未解決問題になっていたわけですが,1998年にトマス・ヘールによってとうとう
「キャノンボール・パッキングよりも密度の高い3次元パッキングは存在しない」
ことが証明されました.ケプラー予想から400年近く経って,やっと定理に昇格したのです.
===================================
【3】kissing numberの問題
次に「最密充填構造」と深く関係するkissing numberの問題について考えてみることにしましょう.
1つの10円玉を机の上において,それと触れ合うようにかつお互いに重ならないようにして,6個の10円玉を置くことができます.1次元の球は区間であり,接触数は1次元のとき2個,2次元のとき6個であることは自明であって,幼稚園児でも解くことができそうです.
平面上で与えられるたいていの問題は,3次元あるいは高次元の空間で考察することができます.一般に,n次元ユークリッド空間において,1つの単位球に同時に接触することのできる単位球の最大個数τn は接吻数(kissing number)あるいは接触数(contact number)と呼ばれていて,最密充填構造と深い関連があります.
10円玉の例からわかるようにτ2=6ですが,n≧3のとき,τn はどうなるでしょうか? まず,3次元の場合,単位球のまわりに面心立方格子状に単位球を置いた場合の接触点
1/√2(±1,±1,0)
1/√2(±1,0,±1)
1/√2(0,±1,±1)
を考えてみると,これら12個の相異なる2点に対応するベクトルの内積は,−1,±1/2,0のいずれかであり,したがって,その間の角度(球面距離)は60度以上となりますから,これらの点で接するように12個の単位球を置くことができます.したがって,τ3≧12は直ちにわかります.
実際,正20面体の12個の頂点に対して,そこで接するように12個の単位球を置くことができます.この場合,頂点間の角度は約63゜26′になり,12個の球は互いに接触しておりません.少しだけなら自由に動かせるという状況ですから,その隙間を一つに集めたらもう一個球が入るのではないでしょうか? ところが,これができるかできないかはあまり自明ではありません.というより,3次元になると,とたんに問題が難しくなってしまうのです.
3次元の球の最大接触数τ3については,1694年にニュートンとグレゴリーの間で議論され,ニュートンは12を,グレゴリーは13を主張したといわれています.結局,ニュートンは12個が最大であるという証明ができず,グレゴリーも13個並べたわけではないので,「ニュートンの13球問題」と呼ばれるこの論争は引き和けに終わりました.
1874年,ホッペが12個が最大であることという証明を試みましたが,不備があり,ようやく完全な証明がなされたのは1953年,ファン・デル・ヴェルデンとシュッテによってです.つまり,3次元空間内で1つの球には同時に12個の球しか接することができません.3次元のときは12個という解が得られるまで非常に長い年月がかかったことになります.
4次元の場合はどうなるでしょうか? 24個の面心立方格子状配置の接触点
1/√2(±1,±1,0,0)
1/√2(±1,0,±1,0)
1/√2(±1,0,0,±1)
1/√2(0,±1,±1,0)
1/√2(0,±1,0,±1)
1/√2(0,0,±1,±1)
で重ならないように置けるので,τ4≧24は明らかです.また,τ4≦25は示されていますが,現在でもτ4が24であるか25であるかは未解決です.
τnの正確な値を決定する問題は大変難しく,4次元以上の高次元については,高度に対称的な格子状配置になっている8次元(240個)と24次元(196560個)の場合を除いて未解決であり,現在,正確な値が知られているのは,τ1=2,τ2=6,τ3=12,τ8=240,τ24=196560の5つだけなのです.
少し詳細に調べていきましょう.4次元,5次元においては面心立方格子の類似品となりますが,6次元以上についてはそのようなことはもはや成立しなくなります.次元の上昇とともに,超球の間の隙間が大きくなっていくからです.8次元になると面心立方格子に十分な隙間ができるので,112個の接触点
1/√2(0,・・・,±1,0,・・・,±1,0・・・) (±1の個数は2つ)
と128個の隙間の点
1/√8(±1,±1,±1,±1,±1,±1,±1,±1) (+の個数は偶数)
に同じ大きさの球が詰め込み可能になります.専門的になりますが,τ8の240個の点はE8型の単純リー代数の240個のルート格子で実現されます.さらに,この詰め込みの断面が6次元と7次元のもっとも効率のいい格子状詰め込みを与えてくれます.
また,1965年,リーチは群論と深く結びついた今日リーチ格子として知られるようになったものに基づいて,24次元空間の格子状詰め込みを構成しました.この詰め込みにおいては,なんと1つの超球に196560個もの超球が接触しています.τ24の196560個の点はリーチ格子の原点から一番近い点の集合として得られることが知られています.
こうして,n≦24のときのすでに知られている上界・下界がスローンらによって与えられています.
n τn
1 2
2 6
3 12
4 24〜25
5 40〜46
6 72〜82
7 126〜140
8 240
9 306〜380
10 500〜595
・・・・・・・・・・・・・・・・・・・
24 196560
つまり,8次元と24次元は,接吻数が計算できる特殊な次元なのであり,都合のいい格子(8次元の場合,格子にはE8,24次元の場合,リーチ格子という名前が付いている)がひとつに決まるので,格子上に球を配置することによって,すぐに接吻数を数えることができるというわけです.
===================================
【4】ラグランジュの定理(4平方和定理)
まず,簡単な数値実験から始めることにしましょう.1から10までの整数をいくつかの平方数の和の形式で表現するというものです.→[補]
整数の平方
0,1,4,9,16,25,・・・
は非常にまばらにしか存在しませんが,2つの平方数の和の形で表される整数はより頻繁に現れます.1,2,4,5,8,9,10,・・・
1=1^2+0^2
2=1^2+1^2
4=2^2+0^2
5=2^2+1^2
8=2^2+2^2
9=3^2+0^2
10=3^2+1^2
ここで,3,6,7といった整数は,2つの平方の和では書けないことがわかります.しかし,3つの平方和となると幾分間隙を埋めてくれます.
3=1^2+1^2+1^2
6=2^2+1^2+1^2
それでも,なおすべての正の整数を得ることはできません.最後まで残った7に対しては3つの平方数の和で書けず,4つの平方数が必要となります.
7=2^2+1^2+1^2+1^2
===================================
このような数値実験からいくつかのことが予想され,肯定的に証明されています.
[1]フェルマー・オイラーの定理(2平方和定理)
特別な素数である2を除外して,素数は4で割ると余りが1になるもの(5,13,17,29,37,41,・・・)と3になるもの(3,7,11,19,23,31,・・・)の2種類に分けられます.
このうち,4n+1の形の素数は2つの整数の平方の和として表されます.たとえば,5=1^2+2^2,13=2^2+3^2,17=1^2+4^2,29=2^2+5^2
しかし,4n+3の形の素数は1つもこのようには表せないのです.この定理はフェルマーの定理と呼ばれ,フェルマーは無限降下法でこれを証明しましたが,その証明は不十分で,100年後のオイラーによって完全な証明がなされています.
それでは,どのような自然数mが2つの平方数の和の形に書くことができるのでしょうか? 2つの平方数の和になる数m=4n+3はありません.mの素因数分解におけるp=4n+3の形のすべての素因数の指数が偶数であるときに限り,2つの平方数の和の形に表すことができるのです.
[2]ルジャンドルの定理(3平方和定理)
4n+3の形の数は2個の平方数の和で表せませんが,同様にして,
「8n+7の形の数は3個の平方数の和では表されない.」
ルジャンドルは,2次形式ax^2+by^2+cz^2の研究を通して,この結果を得ています.
===================================
[3]オイラー・ラグランジュの定理(4平方和定理)
また,前述の数値実験から
「すべての正の整数は,g個の平方数の和として表すことができるだろうか? さらに,gの最小値はいくつであろうか?」
というより高度な問題が派生します.
「すべての正の整数は4個の整数の平方和で表される」
というのが,ラグランジュの定理なのですが,驚くべきことに,7のみならず任意の自然数はたった4つの平方数の和の形に表せるのです.
7=2^2+1^2+1^2+1^2
2=1^2+1^2+0^2+0^2
このことを,シンボリックに書くと
n=□+□+□+□
となります.□は平方数の意味です.
オイラーはこの定理の直前まで行きながら,最後の段階で成功しませんでした.ラグランジュはオイラーの研究成果からアイデアを得て,1772年,最後の段階を突破したのですが,その証明中で用いられる基本公式が
x=ap+bq+cr+ds,
y=aq−bp+cs−dr,
z=ar−bs−cp+dq,
w=as+br−cq−dp
とおくと
(a^2+b^2+c^2+d^2)(p^2+q^2+r^2+s^2)=x^2+y^2+z^2+w^2
が成り立つというもので,1748年にオイラーによって証明されています.
この基本公式はハミルトンの4元数(1843年)を使ったうまい方法でも証明されますが,それにしても,オイラーはどのようにして発見したのでしょう? なお,四元数は複素数に似ていますが,ただ1つではなく3つの虚数をもつ数体系で,i^2=−1,j^2=−1,k^2=−1,ij=k,jk=i,ki=j,ji=−k,kj=−i,ik=−jなる性質をもち,
(x+yi+zj+wk)(x−yi−zj−wk)=x^2+y^2+z^2+w^2
となります.
上に掲げた基本公式は,4つの平方数の和となっている数は積の演算で閉じていること,すなわち,n1が4つの平方数の和ならば,n1n2もそうであることを示しています.これにより,ラグランジュの定理を証明するには,すべての素数pが4つの平方数の和であるということの証明に帰着されることになります.また,
2=1^2+1^2+0^2+0^2
ですから,pは素数と仮定してもよいわけです.
すべての奇素数pが4つの平方数の和であることの証明も,背理法の1種である無限降下法によって証明できるのですが,これについては最近出版された
J.S.Chahal著,織田進訳「数論入門講義」共立出版
にわかりやすい解説がありましたので,それに譲ることにします.
===================================
【5】ウェアリングの問題とヒルベルトの定理
1770年,ウェアリングは4平方和定理を拡張して,
「任意の整数はたかだか9個の3乗数の和として,あるいは19個の4乗数の和として表される」
ことを証明抜きで主張しました.これが,有名なウェアリングの問題です.
ウェアリングの問題は,2次形式ではなく高次形式を扱っていて,多くの数学的思考を刺激しました.そして,1909年,ヒルベルトによって
「どの数もg個のk乗数の和で表される」
ことが肯定的に証明されています.
n=x1^k+・・・+xg^k
===================================
【6】9三乗数定理,19四乗数定理,・・・
19四乗数定理:
「すべての正の整数は19個の4乗数の和で表される」
は1986年に証明されています.つまり,ウェアリングの問題も約200年かかって解決されたことになります.
なお,g乗数は平方数よりもずっとまばらにしか分布しませんから,以下,37個の5乗数の和,73個の6乗数の和,・・・と続きますが,この最良値を完全に決めることはまだできていません.高次形式の理論はまだ発展途上なのです.
===================================
[補]巨人ヒルベルトの推測に反して
数学の巨人と称されるヒルベルトは,ポアンカレを議長とする1900年の第2回国際数学者会議で「数学の諸問題」という講演を行っています.ヒルベルトのあげた23の問題は数学のほとんど全分野にわたっていて,彼自身の研究と密接に関連しています.
そのなかで,数学の発展をもたらした問題の例として,最速降下線の問題,フェルマーの問題,三体問題,正多面体の問題,代数関数論におけるヤコビの逆問題などをあげていますが,フェルマーの問題がまったく純粋な思考の産物であるのに対して,三体問題は天文学上の必要性から生じたもので好対照をなしています.
第7問題が2^(√2)やe^πの超越性を問うものです.その後,1919年に,ヒルベルトは数学の難問について講義し,2^(√2)やe^πの超越性の証明はリーマン予想やフェルマー予想を解くよりはるかに難しいと考えたのですが,e^πは1929年に,2^(√2)は1934年に超越数であることが証明されました.
ζ(s)の零点がs=−2,−4,・・・,−2nとs=1/2+tiの線上にあるというのが有名なリーマン予想ですが,ヒルベルトは,「リーマン予想は私が生きているうちに解決され,フェルマー予想は長らく未解決のままであろう」と述べたといわれています.
360年ものあいだ未解決の数学的難問であったフェルマー予想は,1994年,ワイルスによって証明されました.しかし,ヒルベルトの推測に反し,リーマン予想は依然としてデッドロック状態にあります.数学における未解決問題のうち最も難しいものと考える人も多いのです.
現在のほとんどの数学者は,自分でも気がつかないうちにヒルベルトの影響を受けているともいわれているほどの数学の巨人ヒルベルトが,パリ問題において,リーマン予想と2^(√2)の超越性の証明の難しさを評価することに失敗したことは,たとえ数学の巨人と呼ばれる人であっても,将来を予言することがいかに難しいかを意味する有名な例として,しばしば引用されます.
予想がどれほど的中しないかという例は,科学史上いくらでも求めることができます.予言が的中しないのは予言者の不明に帰すべきでなく,未来を占うことの困難さを教えてくれるのです.
===================================
[補]頭の体操? 純然たる数学?
ラグランジュの定理は2次形式の問題なので,n次元空間における格子点の配置の問題として幾何学的にも考えることができます.それによると,1から10までの整数は
(1,2,4,5,8,9,10),(3,6),(7)
の3群に分けることができます.
すなわち,2個以下の平方数の和で表される整数,3個の平方数の和で表される整数,4個の平方数の和で表される整数というわけです.あるいは,平方数を独立させて,
(1,4,9),(2,5,10),(3,6),(7)
の4群に分けるほうがよりスマートでしょう.
それでは
(2,3,4,5,7,8,9),(6,10)
の2群がどのような規則で分けられたものか,各自,考えてみて下さい.
答は2つ以上の異なる素数の積になっているのが(6,10)です.
6=2×3,10=2×5
素数や4=2^2,8=2^3,9=3^2のように1つの素数のベキ乗になっている数は,(2,3,4,5,7,8,9)の群に入ります.実はこの問題は単なるクイズではなく,れっきとした数学の問題です.
代数学の教えるところによれば,n元の体(加減乗除の演算が定義された集合)が存在するための必要十分条件は,nが素数(のベキ乗)になっていることで,位数2,3,4,5の体は存在するが,位数6の体は存在しない.そして,位数7,8,9の体は存在して,位数10のものは存在しないのです.
===================================