3次元凸多面体の頂点,辺,面の数をそれぞれv,e,fとすると,
v−e+f=2 (オイラーの多面体定理)
が成り立ちます.たとえば,正八面体ではf=8,v=6,e=12.切頂20面体ではf=32(正五角形12枚,正六角形20枚),v=60,e=90でオイラーの公式が成り立っているが,正多面体に限らず任意の凸多面体について常に成立する公式である.
これは3次元立体について,0次元の特性数であるv,1次元の特性数であるe,2次元の特性数であるfの関係を述べたものと解釈され,最も美しい数学の10大定理の1つに挙げられるものです.量(v−e+f)はオイラー標数と呼ばれます.オイラー標数は幾何学において重要な概念である位相不変量の草分けであり,オイラーの多面体定理を利用すると,
1)どの面も同数の辺で囲まれている.
2)どの頂点にも同数の辺が集まっている.
という仮定をするだけで,正多角形であるという仮定をまったくせずとも正多面体は5種類しかないことを証明可能になります.
これが実に役立つ公式で,たとえばオイラーの多面体定理で示される制限から,正多面体は5種類しかないとか,すべての面が六角形であるような多面体は存在しないという結論,単一の凸n角形で平面を敷き詰めるものはn≧7では存在しないこと,2次元以上ですべての頂点の次数が6以上となることは不可能であり,必ず次数が5以下の頂点をもつことなどが導き出されます.
オイラーの公式は単純ですが,要はその使い方というわけで,以下,オイラーの多面体公式から導き出される定理を中心にみていくことにします.
===================================
【1】プラトン立体
正則な多面体とはその面が正多角形で,どの頂点にも同じ数の面が集まっている凸多面体のことで,各頂点に正p角形がq面集まる正多面体では,
pf=2e,qv=2e
が成り立ちます.さらに,正多面体の頂点,辺,面の数をそれぞれv,e,fとすると,v−e+f=2が成り立ちますから
1/e=1/p+1/q−1/2
v=4p/(2p+2q−pq),
e=2pq/(2p+2q−pq),
f=4q/(2p+2q−pq)
となります.
[1]すべての面が正三角形で構成されている立体の場合,p=3,q=3,4,5とおくと,
3f=2e,3v=2e,v−e+f=2 → f=4(正四面体)
3f=2e,4v=2e,v−e+f=2 → f=8(正八面体)
3f=2e,5v=2e,v−e+f=2 → f=20(正二十面体)
となります.
それに対して,すべての面が正方形,正五角形で構成されている立体は一意に決まり
[2]すべての面が正方形で構成されている立体の場合
4f=2e,3v=2e,v−e+f=2 → f=6(立方体)
[3]すべての面が正五角形で構成されている立体の場合
5f=2e,3v=2e,v−e+f=2 → f=12(正十二面体)
となります.
===================================
【2】アルキメデス立体・ジョンソン立体
アルキメデス立体・ジョンソン立体の話にはいる前に平面充填形について考えてみます.
[1]プラトンの平面充填形
正多角形は無限に多く存在しますが,それでは「互いに合同な正多角形を隙間も重なりもないように並べて平面を完全に埋める仕方が何通りあるでしょうか?」
この問題は昔から知られていて,それが3種類に限ることは以下のようにして証明されます.正多角形の中で平面をタイル張りのように隙間なく埋めつくすことができる平面充填形では,各頂点に正p角形がq面が会するとすると,正p角形の一つの内角は2(1−2/p)×90°であり,一つの頂点の回りの内角の和はこれがq個集まって四直角ですから,
2q(1−2/p)=4,すなわち,
1/p+1/q=1/2 (p,q≧3)
で,この条件を満たす(p,q)の組は(3,6),(4,4),(6,3)の3通りしかありません.したがって,平面充填形は正三角形,正方形,正六角形の3つだけです.このうち正方形のは碁盤,正六角形のは蜂の巣などでおなじみでしょう.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[2]アルキメデスの平面充填形
1種類の正多角形を使ったタイル張りはわかりましたが,それでは2種類以上の正多角形を使ったらどうでしょうか? それを全部求めてみよといわれたらちょっと大変です.まず,どんな多角形を組み合わせたら,頂点のまわりを完全に埋めることができるかを考えてみましょう.
頂点のまわりには正三角形でも6個より多く並べることはできません.しかもこの場合は全部が正三角形に限ります.次に5個集まる場合は少なくとも正三角形が3個なければなりませんから,結局,5個の組は正三角形3個と正方形2個か,正三角形4個と正六角形1個の場合しかありません.次に4個の場合,正多角形をそれぞれp1 ,p2 ,p3 ,p4 角形(pi ≧3)とすると,必要条件は
1/p1 +1/p2 +1/p3 +1/p4 =1
3個の場合は同様に
1/p1 +1/p2 +1/p3 =1/2
と書けます.これを満たす3以上の正の整数の組を求めればよいことになります.
実際に解いてみると必要条件を満たす組は17組できますが,十分条件を満たさない,すなわち,1点のまわりだけは完全に埋められても平面のタイル張りにならないものがでてきます.たとえば,正五角形,正十角形を含むものは実際にタイル貼りを完成させることができません.
十分条件を満たしたものだけを列挙すると
プラトンの平面充填形:(3^6),(4^4),(6^3)
アルキメデスの平面充填形:(3^46),(3^34^2),(34^26),(3^26^2),(48^2),(4612),(312^2)
ですが,(3^34^2)には本質的に異なる並べ方が2通りあり,結局,求めるタイル張りであるアルキメデスの平面充填形は8種,ただ1種類の正多角形を使う場合の3通り(プラトンの平面充填形)を含めて全部で11通りあることになります.
また,11通りの基本領域はプラトンの平面充填形:(3^6),(4^4),(6^3)ではそれぞれ正三角形,正方形,正六角形ですが,アルキメデスの平面充填形では
(3^46) :正三角形:正六角形=8:1
(3^34^2):正三角形:正方形=2:1
(34^26):正三角形:正方形:正六角形=2:3:1
(3^26^2):正三角形:正六角形=2:1
(48^2) :正方形:正八角形=1:1
(4612):正方形:正六角形:正十二角形=3:2:1
(312^2):正三角形:正十二角形=2:1
となります.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[3]アルキメデス立体・ジョンソン立体
アルキメデスの平面充填形は全部で8種ありましたが,アルキメデス立体やジョンソン立体は全部で何種類あるでしょうか?
1/p1 +1/p2 +1/p3 +1/p4 >1
1/p1 +1/p2 +1/p3 >1/2
のすべての可能な解を列挙し,対応する多面体の存在・非存在を論じなければなりません,アルキメデスの平面充填形の最大pi角形は12でしたが,その過程でアルキメデス立体,ジョンソン立体では10になること,n(≧11)角形を含む面正則凸多面体は角柱か反角柱だけであることが証明されます.しかしながら,アルキメデス立体の13種はともかくとしてジョンソン立体は92種であることの完全な分類に達することは簡単ではありません.
===================================
【3】デルタ多面体
正則とは限らない一般の多面体では
Σpi=p1+・・・+pf=2e,
Σqi=q1+・・・+qv=2e
となります.
オイラーの多面体定理は,8個の凸なデルタ多面体が存在することの証明の基礎にもなります.デルタ多面体では,pi=3,3≦qi≦5ですから
3f=2e (fは偶数)
3v≦2e≦5v
これをオイラーの多面体定理
v−e+f=2
に代入すると
6≦e≦30
これより
4≦f≦20,(3≦v≦20)
が得られます.3f=2eよりfは偶数ですから,4面体から20面体までの偶数多面体がデルタ多面体の候補となります.このように下限・上限が求められるとそれを実際に構成する際に非常に有用となります.
f e v
4 6 4
6 9 5
8 12 6
10 15 7
12 18 8
14 21 9
16 24 10
18 27 11
20 30 12
===================================
【4】菱形多面体
菱形多面体に対してオイラーの公式を使うと,
4f=2e,qv=2e
ここで頂点を鋭角同士,鈍角同士で合わせると,鋭角の頂点が何面合わさるか(3,4,5のいずれか)に応じて,菱形六面体,(標準的な)菱形十二面体,菱形三十面体の3種類しかできません.この6,12,30という値は正多面体の辺の数と同じですが,これは偶然ではなく,実質的に式
1/e=1/3+1/q−1/2 (q=3,4,5)
で与えられる量です.
菱形三十面体の「ベルト」を押しつぶしてできる菱形二十面体や第2種菱形十二面体では,菱形の鋭角と鈍角の頂点が混じって会する頂点があります.そのため,菱形多面体の分類には少し手間がかかるようです.デルタ多面体の場合に較べて複雑になるのですが,ここでは合同な菱形だけでできている菱形多面体の必要条件を求めてみることにします.
[1]ゾーン多面体
平行多角形のみで構成される多面体をゾーン多面体といいます.ゾーン多面体は無数にあるのですが,そのうち,ゾーン面は2枚ずつ増やせるので2(n−1)面,天井面と床面はそれぞれ(n−1)(n−2)/2面で
2(n−1)+2(n−1)(n−2)/2=n(n−1)
という構成になっています.
f=n(n−1)=2,6,12,20,30,42,56,・・・
e=2n(n−1)
v=n(n−1)+2
n ゾーン 天井床 f e v
3 4 2 6 12 8
4 6 6 12 24 14
5 8 12 20 40 22
6 10 20 30 60 32
[2]合同な菱形だけでできている菱形多面体
次に,菱形のみの場合を考えます.菱形のすべての稜は2方向,菱形六面体のすべての稜は3方向,菱形十二面体では4方向,菱形三十面体では6方向を向いているのですが,菱形二十面体では5方向,菱形十二面体(第2種)では4方向を向いています.一般にすべての稜がn方向を向くとき,面数はf=n(n−1)となります.
菱形の鋭角(acute)m個と鈍角(obtuse)n個が集まる頂点をamonで表すことにすると,菱形の鋭角と鈍角の和は
a+o=180°
ですから,頂点に4つ以上の鈍角が集まることは不可能です.頂点に集まる角がすべて鈍角である場合はqi=3すなわちo3で,菱形の鈍角が120°より小さいことが必要になります.また,この菱形(鋭角が60°より大きい)が頂点に集まる角がすべて鈍角である場合は最大1頂点に5枚ですから,qi=4またはqi=5ということになります.
さらにまた,鈍角と鋭角が混ざっている頂点がある多面体が菱形二十面体と菱形十二面体(第2種)なのですが,このような必要条件を満たす対象を広めに見積もると
pi=4,3≦qi≦5
ですから
4f=2e
3v≦2e≦5v
これをオイラーの多面体定理
v−e+f=2
に代入すると
e≧12,f≧6
という下限が得られます.
しかし,f=6は細い菱面六面体と太った菱面六面体ですから,これだけでは何の手がかりも得られていないことと同じです.そこで,もう少し数学的に考察して上方からの制限(f≦30,e≦60)を設けてみたいと思います.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
o=120°(a=60°)の菱形では平面充填形となってしまいますから,o3を有する菱形多面体の面は,正三角形を2個つなげた菱形(対角線の長さの比が1:√3)よりも太っていることが必要で,黄金比や1:√2の菱形などがその候補となるというわけです.
また,この菱形(鋭角が60°より大きい)が頂点に集まる角がすべて鋭角である場合は最大1頂点に5枚ですから,a3またはa4またはa5ということになります.また,鈍角と鋭角が混ざっている頂点がある場合,a+o=180°ですから,a1o1,a2o2は存在し得ず,a3o1,a2o1,a1o2のみが可能となります.実際には
扁長菱面体:a3=2,a1o2=6
扁平菱面体:a2o1=6,o3=2
菱形十二面体:a4=6,o3=8
菱形十二面体(第2種):a4=2,a3o1=4,a1o2=4,o3=4
菱形二十面体:a5=2,a3o1=10,o3=10
菱形三十面体:a5=12,o3=20
のように必要条件として,さらに
Σmi=Σni=e
を満たすような頂点が可能となります.
以上をまとめると
q=3:a3,a2o1,a1o2,o3
q=4:a4,a3o1
q=5:a5
であり,q=6となる頂点は不可能です.
また,o3をもたない多面体ではある頂点に鋭角が3つ集まってa3となるのですが,それは扁長菱面体のケースですから平均会合面数qmは最小(qm=3)となり除外することができます.こうしてqmが最大になるのはa5とo3のみからなる菱形多面体の場合と考えられます.
このとき,a5の頂点数をx,o3の頂点数をyとすると,
5x+3y=2e
5x=e,3y=e
が成り立ちますから,
qm=(5x+3y)/(x+y)
5x+3y=2e,x=e/5,y=e/3
を代入すると
qm=15/4
これより,
3≦qm≦15/4<4
となるのですが,
4f=2e,qmv=2e
をオイラーの公式に代入すると
12≦e≦60 → 6≦f≦30
となって,fの上限値が得られます.
4f=2eよりeは偶数ですが,さらに
5x=e,3y=e
よりeは5の倍数かつ3の倍数ですから,fは15の倍数であることがわかります.しかし,f=15,30,45,60,・・・と順に検討しなくても,a5とo3のみからなる菱形多面体は,オイラーの公式から直ちにf=30であることが導き出されます.
以上のようにa5とo3のみからなる菱形多面体に絞って考えると,fの上限:f≦30を簡単に求めることができるというわけです.
===================================
【5】7本の辺をもつ多面体?
pi≧3,qi≧3ですから
2e≧3f,2e≧3v
このことから多面体は7本の辺をもつこと(e=7)は不可能であることが証明されます.
(証)e=7なる多面体が存在したと仮定すると,3f≦14,3v≦14.f,vは面,頂点の個数なので,3より大きな整数でなければならない.したがって,f=4,v=4,e=7となるが,これはオイラーの多面体定理
v−e+f=2
を満たさないので矛盾が生じる.
このことから
f≧4,v≧4,e≧6(e≠7)
であることがわかりましたが,他にオイラーの多面体定理で示される制限はないのでしょうか?
オイラーの多面体定理で示される制限からいえることとして,
v−e+f=2,2e≧3f,2e≧3v
を組み合わせると,
2v+2f=2e+4≧3f+4 → f≦2v−4
2v+2f=2e+4≧3v+4 → v≦2f−4
これらはシュタイニッツの定理(1906年)と呼ばれますが,オイラー自身すでに
f≦2v−4,v≦2f−4
という結果を知っていたようです.また,別の組合せ方をすると,
3v+3f=3e+6≦2e+3f → 3f−e≧6
3v+3f=3e+6≧2e+3v → 3v−e≧6
も得られます.
なお,これらの式の頂点vと面fの対称性により,f面凸多面体とv点凸多面体は同数になるのですが,「4面体は4つの頂点と4つの面から構成されるので,頂点数を加えていうと,4点4面体である.5面体には4角錐(5点5面体)と3角柱(6点5面体)がある.6面体には5点6面体が1種類,6点6面体,7点6面体,8点6面体が2種類ずつの合計7種類ある.以下,7面体には34種類,8面体には257種類,9面体には266種類ある.
見方を変えて,凸多面体を頂点数で分類すると,4点多面体は1種類,5点多面体は2種類,6点多面体は7種類,7点多面体は34種類,8点多面体は257種類,9点多面体は266種類,10点多面体は32300種類ある.」・・・両者で同じ数値が出現していることに気づかれたかと思います.
つぎに,3次元立体では必ず頂点に結合する辺の個数が3の頂点か3角形の面をもつことを示します.n本の辺をもつfn枚の面とn本の辺が交わるvn個の頂点をもつ凸多面体について,
i)Σnfn=Σnvn
ii)Σf2n+1は偶数
iii)v3+f3>0
を順に示していきます.
(証)各辺は2個の頂点をもつから,Σnvn=2E.また,各辺では2枚の面が交わるからΣnfn=2E.
(証)i)より,Σ(2n+1)f2n+1=(偶数),したがって,Σf2n+1も偶数.
(証)E=Σen,V=Σvn,F=Σfn,Σnfn=Σnvn=2E. もしv3=0,f3=0ならば,2E=4v4+5v5+・・・≧4V.同様に,2E≧4F.これより,V−E+F≦E/2+E/2−E=0.これはオイラーの多面体定理:V−E+F=2に矛盾するから,v3,f3のうち,少なくとも1つは0でない.
===================================
【6】六角形で球面が覆えるか?
多面体には3角形か4角形面か5角形面が少なくとも1つなければならないことは簡単に証明できます.どの領域も少なくとも6つの領域で囲まれていると仮定すると
6f≦2e
また,このような問題を解くにあたっては,すべての交点で3本の境界線が会している地図だけを考えればよいので,
3v≦2e
これらをオイラーの公式に代入すると
v−e+f≦1/3e−e+2/3e=0≠2
となって矛盾を生じます.したがって,5個以下の隣接領域しかもたない領域が少なくともひとつあることになります.
===================================
【7】もっと驚くべき定理
フラーレンはダイヤモンドに次ぐくらい硬く,セシウムやルビジウムなどのアルカリ金属を加えると超伝導をおこすという化学的性質をもつ.切頂20面体は頂点が60あり,どの頂点からも3本の手がでている.したがってC60では30本の二重結合(12500のケクレ構造)が描ける.また,異性体は1812種類もあり,そのうちで12個の五角形がすべて離れているものが1つだけあり,それがサッカーボール型のC60である.この形は最も安定であるが,C60,C70以外にも正五角形12枚,正六角形は20枚〜100枚以上の0次元ダイヤモンドが知られている.
球を六角形でタイル貼りすることができないこと以上に驚くべきことがある.もし球を5角形と六角形からなる地図で敷き詰めたならば,サッカーボールのようにちょうど12個の5角形がなければならないというものである.
(Q)五角形と六角形からなる多面体には五角形が常に12個ある.
(A)n本の辺をもつfn枚の面とn本の辺が交わるvn個の頂点をもつ凸多面体について,
F=f3+f4+f5+・・・
2E=3f3+4f4+5f5+・・・
6F−2E≧12
に代入すると
3f3+2f4+f5−f7−2f8−3f9−・・・≧12
地図のように2つの辺に囲まれた領域まで許すことにすると,この数え上げ公式は
4f2+3f3+2f4+f5−f7−2f8−3f9−・・・=12
となり,係数が1ずつ小さくなり,それが0となるf6は式中に現れない.
このことからもf3,f4,f5の少なくとも1つは0でない→多面体には3角形か4角形面か5角形面が少なくとも1つなければならない,同様に,多面体の少なくとも1つの頂点は3次か4次か5次でなければならない→すべての頂点の次数が6以上となることは不可能であり,必ず次数が5以下の頂点をもつことが導き出される.これもオイラーが知っていた結果であるということである.
ここで,
(1)f2=f3=f4=0だとすると,少なくとも12個のf5がなければならないことになる(フラーレン).
(2)多面体の面がすべてf5とf6であるならば,f5=12(切頂二十面体など)
(3)多面体の面がすべてf4とf6であるならば,f4=6(切頂八面体など)
(4)多面体の面がすべてf4,f6,f8であるならば,f4=f8+6(大菱形立方八面体など)
(5)多面体の面がすべてf3とf6であるならば,f3=4(切頂四面体など)
すなわち,球面を六角形と三角形で覆うとしたら,ちょうど4個の三角形が必要である.一般に,球面を六角形とn角形で覆うとしたら,ちょうどk=12/(6−n)個のn角形が必要である.n=3,4,5のとき,
k=12/(6−n)=4,6,12
であるが,これは正多面体の面数と同じである.これらの結果は極めて重要で,四色定理の証明の中核をなしている.
===================================
【8】石鹸の泡細胞
オイラーの定理が物理的作用と結びつくと,興味のある幾何学的効果が出現してきます.たとえば,2次元的にランダムに配列した石鹸の泡はいろいろなサイズの泡細胞からなっていますが,表面張力の要請から境界長を極小化しようとしますから,接合角度は120度となります(プラトー問題・最小シュタイナー木問題).このことから,石鹸の泡は各頂点の次数がすべて3である平面図形と考えることができます.また,互いに120°の角度で交わる石鹸膜の交線は
arccos(−1/3)=109.471°
で接触します.正四面体の頂点から中心に向かう3枚の膜は互いに120°の角度をなし,中心に集まる4本の線は109.471°(マラルディの角)をなすのです.
このように,120°と109.471°は石鹸膜が接触するときの基本的な角度ですが,コクセターは1つの泡に接する泡の数を
(23+√313)/3=13.56
と計算し,そのアイデアを日記に記しています.
これは2次方程式
3x^2−46x+72=0
の解となっていることが見てとれますが,どのようにして導出されたものなのでしょうか?
(A)4次元正多胞体はシュレーフリ記号{p,q,r}・・・各頂点にp角形がq面集まる多面体が各辺にr個集まる・・・で表記されるとします.
[参]コクセターの「最密充填と泡」に関する論文
Coxeter: Close packing and froth, Illinois Journal of Mathematics 2, 746-758 (1958)
によると,p,q,rに関する不等式
1/p+1/q>1/2 (p,q≧3)
1/q+1/r>1/2 (q,r≧3)
に有限群であるという条件が付加されると,さらに2次不等式
p−4/p+2q+r−4/r<12
p−4/p<12−2q−r+4/r
p^2−(12−2q−r+4/r)p−4<0
が得られます.
泡細胞の合胞体の場合,1個の頂点に3個の辺が集まり,1本の辺の周りに3個の泡細胞が合するというのが空間分割の局所条件ですから,q=r=3とおくと
p^2−(13/3)p−4<0
p<(13+√313)/6=5.1153
これを
f=12/(6−p)
v=4p/(6−p)
e=6p/(6−p)
に代入すると
f=(23+√313)/3=13.564
v=2(17+√313)/3=23.128
e=17+√313=34.692
になるというわけです.
===================================
【9】ヒーウッドの公式
平面や球面上に描かれた地図に関するオイラーの公式は
v−e+f=2
でしたが,トーラス上の地図に関するオイラーの公式は
v−e+f=0
です.
トーラスでは6個以下の隣接領域しかもたない領域が少なくともひとつあることを証明するために,どの領域も少なくとも7つの領域で囲まれていると仮定すると
7f≦2e
また,3v≦2eですから
v−e+f≦2/7e−e+2/3e=−1/21e≠0
という矛盾を引き出すことができます.
したがって,トーラスでは6個以下の隣接領域しかもたない領域が少なくともひとつあることになります.このことを利用すると,
「トーラス上のどんな地図でも7色で塗り分けられる」
ことが証明されます.ヒーウッドは実際に7色を必要とする例もあげています.
これを証明したヒーウッドはさらにg個の穴があいたトーラス上の地図に関するオイラーの公式
v−e+f=2−2g
を利用して
(1)2個の穴があいているトーラス上の地図はどれも8色で塗り分けられる
(2)3個の穴があいているトーラス上の地図はどれも9色で塗り分けられる
・・・・・・・・・・・・・・・・・・・・・・・・
(3)10個の穴があいているトーラス上の地図はどれも14色で塗り分けられる
に引き続いて,
(4)g個の穴があいているトーラス上の地図はどれもH(g)色で塗り分けられる
H(g)=[{7+√(1+48g)}/2]
を証明しました.
[・]はガウス記号で,
g:1,2,3, 4, 5, 6, 7, 8, 9,10
H:7,8,9,10,11,12,12,13,13,14
となるのですが,しかし,ヒーウッドはg≧2に対してそのような地図が実在することを示すことはできませんでした.そのため,この問題は「ヒーウッド予想」と呼ばれることになりました.
1968年,リンゲルとヤングスは,g個の穴のあいているトーラス上にこれだけの色を必要とする地図が存在することを証明したのですが,ヒーウッド予想(1890年)が最終的に証明されるまでには77年もの歳月が必要だったというわけです.
===================================
【10】さらなる帰結
オイラーの多面体定理を使うと
[1]2次元泡細胞の辺数の平均は≦6であり,すべての泡細胞が6辺以上の辺をもつことは不可能である
[2]3次元泡細胞の面数の平均は≦14であり,すべての泡細胞が14面以上の面をもつことは不可能である
ことが証明された.
2次元細胞の多くは6角形であり,3次元細胞の多くには14面体であることはわかったが,4次元,5次元,・・・,n次元での空間充填多面体の基本形はどうなるのだろう? どのような形になるのかを知る人は(たとえいたとしても)非常に少ないであろう.
そこで,「n次元の舗石定理」をまとめておきたい.
[1]n次元空間充填では,各頂点の周りに少なくともn+1個の多面体が集まる(ルベーグ).
[2]n+1個のとき,ボロノイ細胞の面数は最大2(2^n−1)個で,安定な空間充填となる(ミンコフスキー).
===================================