■等面単体の体積(その166)
鋭角の等面単体が球面に内接することは自明であるが,球面三角法を用いて単位球に内接する条件を求めておきたい.
===================================
cosC=(cosc−cosa・cosb)/sina・sinb
ここで,弧長を弦長に変換しておく.
a→2arcsin(a/2)
と置けばよい.
cos{2arcsin(a/2)}=1−2(a/2)^2=1−a^2/2
sin{2arcsin(a/2)}=a{1−(a/2)^2}^1/2
cosC=(cosc−cosa・cosb)/sina・sinb
={(1−c^2/2)−(1−a^2/2)(1−b^2/2)}/ab{1−(a/2)^2}^1/2{1−(b/2)^2}^1/2
sin^2C=1−{(1−c^2/2)−(1−a^2/2)(1−b^2/2)}^2/a^2b^2{1−(a/2)^2}{1−(b/2)^2}
=1−(1−c^2/2)^2/△+2(1−c^2/2)(1−a^2/2)(1−b^2/2)/△−(1−a^2/2)^2(1−b^2/2)^2/△
△=a^2b^2{1−(a/2)^2}{1−(b/2)^2}
▲=a^2b^2c^2{1−(a/2)^2}{1−(b/2)^2}{1−(c/2)^2}
sin^2C
=1−(1−c^2/2)^2/△+2(1−c^2/2)(1−a^2/2)(1−b^2/2)/△−(1−a^2/2)^2(1−b^2/2)^2/△
=1−(1−c^2/2)^2c^2{1−(c/2)^2}/▲+2(1−c^2/2)(1−a^2/2)(1−b^2/2)c^2{1−(c/2)^2}/▲−(1−a^2/2)^2(1−b^2/2)^2c^2{1−(c/2)^2}/▲
===================================
S=A+B+C−π,S=4π/4=π
であるから,
A+B+C=2π,A+B=2π−C
cos(A+B)=cosC
退屈で長い計算が続きそうなので,次回の宿題としたい.
===================================