■等面単体の体積(その147)
3次元正単体(辺の長さ1)
(−1/2,−√3/6,−√6/12)
(+1/2,−√3/6,−√6/12)
(0,√3/3,−√6/12)
(0,0,√6/4)
を平行移動させる
(0,0,0)
(1,0,0)
(1/2,√3/2,0)
(1/2,√3/6,√6/3)
A(0,0,0,0)
B(1,0,0,a)
C(1/2,√3/2,0,2a)
D(1/2,√3/6,√6/3,3a)
b^2=1+a^2
c^2=1+4a^2
d^2=1+9a^2
4a=dとおくと,
16a^2=1+9a^2,a^2=1/7
b^2=8/7,c^2=11/7,d^2=16/7
4a=cとおくと,
16a^2=1+4a^2,a^2=1/12
b^2=13/12,c^2=16/12,d^2=21/12
4a=bとおくと,
16a^2=1+a^2,a^2=1/15
b^2=16/15,c^2=19/15,d^2=24/15
===================================