■等面単体の体積(その147)

 3次元正単体(辺の長さ1)

  (−1/2,−√3/6,−√6/12)

  (+1/2,−√3/6,−√6/12)

  (0,√3/3,−√6/12)

  (0,0,√6/4)

を平行移動させる

  (0,0,0)

  (1,0,0)

  (1/2,√3/2,0)

  (1/2,√3/6,√6/3)

  A(0,0,0,0)

  B(1,0,0,a)

  C(1/2,√3/2,0,2a)

  D(1/2,√3/6,√6/3,3a)

  b^2=1+a^2

  c^2=1+4a^2

  d^2=1+9a^2

  4a=dとおくと,

  16a^2=1+9a^2,a^2=1/7

  b^2=8/7,c^2=11/7,d^2=16/7

  4a=cとおくと,

  16a^2=1+4a^2,a^2=1/12

  b^2=13/12,c^2=16/12,d^2=21/12

  4a=bとおくと,

  16a^2=1+a^2,a^2=1/15

  b^2=16/15,c^2=19/15,d^2=24/15

===================================