■三角形の相似(その6)
EF=a・cosα
DF=b・cosβ
DE=c・cosγ
cosα=(b^2+c^2−a^2)/2bc
cosβ=(c^2+a^2−b^2)/2ca
cosγ=(a^2+b^2−c^2)/2ab
に代入してヘロンの公式を使ってみたい.
===================================
s=(EF+DF+DE)/2
s−a=(−EF+DF+DE)/2
s−b=(EF−DF+DE)/2
s−c=(EF+DF−DE)/2
4s・abc=a^2(b^2+c^2−a^2)+b^2(c^2+a^2−b^2)+c^2(a^2+b^2−c^2)
=−a^4+2a^2(b^2+c^2)+2b^2c^2−b^4−c^4
=−a^4+2a^2(b^2+c^2)−(b^2−c^2)^2
4(s−a)・abc=−a^2(b^2+c^2−a^2)+b^2(c^2+a^2−b^2)+c^2(a^2+b^2−c^2)
=a^4+2b^2c^2−b^4−c^4=a^4−(b^2−c^2)^2=(a^2+b^2−c^2)(a^2−b^2+c^2)
4(s−b)・abc=a^2(b^2+c^2−a^2)−b^2(c^2+a^2−b^2)+c^2(a^2+b^2−c^2)
=b^4+2a^2c^2−a^4−c^4=(a^2+b^2−c^2)(b^2−a^2+c^2)
4(s−c)・abc=a^2(b^2+c^2−a^2)+b^2(c^2+a^2−b^2)−c^2(a^2+b^2−c^2)
=c^4+2b^2a^2−b^4−a^4=(c^2+b^2−a^2)(a^2−b^2+c^2)
===================================