■等面単体の体積(その4)
4次元空間の5点の作る単体の体積は
[1,1,1,1,1]
[x11,x21,x31,x41,x51]
24V=[x12,x22,x32,x42,x52]
[x13,x23,x33,x43,x53]
[x14,x24,x34,x44,x54]
i列からi+1列を引く(i=1〜4)と第1行は末列外は0となるから,
[x11−x21,x21−x31,x31−x41,x41−x51]
24V=[x12−x22,x22−x32,x32−x42,x42−x52]
[x13−x23,x23−x33,x33−x43,x43−x53]
[x14−x24,x24−x34,x34−x44,x44−x54]
a1=(x11−x21,x12−x22,x13−x23,x14−x24)
a2=(x21−x31,x22−x32,x23−x33,x24−x34)
a3=(x31−x41,x32−x42,x33−x43,x34−x44)
a4=(x41−x51,x42−x52,x43−x53,x44−x54)
とおき,この転置行列を左から書けると,内積行列(グラム行列)
(24V)^2=det[<ai,aj>]
<ai,aj>=Σ(xik−xi+1k)(xjk−xj+1k)
===================================
[まとめ]4次元の場合
(24V)^2=det[<ai,aj>],i,j=1〜4
(12S)^2=det[<ai,aj>],i,j=2〜4
求めたい答えは
h=V/nS
===================================