■等面単体の体積(その4)

 4次元空間の5点の作る単体の体積は

    [1,1,1,1,1]

    [x11,x21,x31,x41,x51]

24V=[x12,x22,x32,x42,x52]

    [x13,x23,x33,x43,x53]

    [x14,x24,x34,x44,x54]

i列からi+1列を引く(i=1〜4)と第1行は末列外は0となるから,

    [x11−x21,x21−x31,x31−x41,x41−x51]

24V=[x12−x22,x22−x32,x32−x42,x42−x52]

    [x13−x23,x23−x33,x33−x43,x43−x53]

    [x14−x24,x24−x34,x34−x44,x44−x54]

a1=(x11−x21,x12−x22,x13−x23,x14−x24)

a2=(x21−x31,x22−x32,x23−x33,x24−x34)

a3=(x31−x41,x32−x42,x33−x43,x34−x44)

a4=(x41−x51,x42−x52,x43−x53,x44−x54)

とおき,この転置行列を左から書けると,内積行列(グラム行列)

(24V)^2=det[<ai,aj>]

<ai,aj>=Σ(xik−xi+1k)(xjk−xj+1k)

===================================

[まとめ]4次元の場合

(24V)^2=det[<ai,aj>],i,j=1〜4

(12S)^2=det[<ai,aj>],i,j=2〜4

 求めたい答えは

  h=V/nS

===================================