■基本単体の二面角(その230)
[3]n=4のとき
P0P1=P1P2=P2P3=P3P4=2
P0P2=P1P3=P2P4=√6
P0P3=P1P4=√6
P0P4=2
P0からでる最長辺はP0P2,P0P3の2本ある.
求めたい点はP0を含まないP2P3の中点ではなかろうか?
===================================
P0(0,0,0,0,0)
P1(−4/5,1/5,1/5,1/5,1/5)
P2(−3/5,−3/5,2/5,2/5,2/5)
P3(−2/5,−2/5,−2/5,3/5,3/5)
P4(−1/5,−1/5,−1/5,−1/5,4/5)
P0P2^2=30/25=6/5
M(−1/2,−1/2,0,1/2,1/2)
P0M^2=1
一方,
[2]nが偶数のとき
(R/ρ)^2=n(n+2)/2(n+1)=24/10 (NG)
===================================