■基本単体の二面角(その214)
[1]nが奇数のとき,
j=(n+1)/2
z^2=j(n+1−j)=(n+1)^2/4
(R/ρ)^2=n(n+1)(n+2)/{n(n+1)(n+2)−3(n+1)^2}=n(n+2)/{n(n+2)−3(n+1)}
[2]nが偶数のとき,
j=n/2
z^2=j(n+1−j)=n(n+2)/4
(R/ρ)^2=n(n+1)(n+2)/{n(n+1)(n+2)−3n(n+2)}=(n+1)/{(n+1)−3}
計算が合わないので,次回の宿題としたい.
===================================