■基本単体の二面角(その213)
4変数の場合についても確認してみたい.
a^2+b^2+c^2=x^2
b^2+c^2+d^2=y^2
c^2+d^2+a^2=z^2
d^2+a^2+b^2=w^2
より,
a^2=(x^2−y^2+z^2+w^2)/2,b^2=(x^2+y^2−z^2+w^2)/2,c^2=(x^2+y^2+z^2−w^2)/2,d^2=(−x^2+y^2+z^2+w^2)/2
2(a^2+b^2+c^2+d^2)=x^2+y^2+z^2+w^2
R^2=(a/2)^2+(b/2)^2+(c/2)^2+(d/2)^2
=(x^2+y^2+z^2)/8=n(n+1)(n+2)/48
z=max(x,y,z,w)
{min(a/2,b/2,c/2,d/2)}^2=(x^2+y^2+z^2−w^2)/8
=(x^2+y^2+z^2+w^2)/8−w^2/4
=n(n+1)(n+2)/48−z^2/4
===================================