■基本単体の二面角(その212)

[Q]3辺の長さがx,y,zである三角形4枚からなる等面四面体のRとρは?

[1]R^2=(a/2)^2+(b/2)^2+(c/2)^2

[2]ρ=min(a/2,b/2,c/2)と思われる.

===================================

  ΣP0Pj^2=Σ{j(n+1−j)},j=1〜n

=Σ{j(n+1)−j^2}

=n(n+1)^2/2−n(n+1)(2n+1)/6

=n(n+1)(3n+3−2n−1)/6

=n(n+1)(n+2)/6=x^2+y^2+z^2

  2(a^2+b^2+c^2)=x^2+y^2+z^2

R^2=(a/2)^2+(b/2)^2+(c/2)^2

=(x^2+y^2+z^2)/8=n(n+1)(n+2)/48

  z=max(x,y,z)

  {min(a/2,b/2,c/2)}^2=(x^2+y^2−z^2)/8

=(x^2+y^2+z^2)/8−z^2/4

=n(n+1)(n+2)/48−z^2/4

===================================