■基本単体の二面角(その212)
[Q]3辺の長さがx,y,zである三角形4枚からなる等面四面体のRとρは?
[1]R^2=(a/2)^2+(b/2)^2+(c/2)^2
[2]ρ=min(a/2,b/2,c/2)と思われる.
===================================
ΣP0Pj^2=Σ{j(n+1−j)},j=1〜n
=Σ{j(n+1)−j^2}
=n(n+1)^2/2−n(n+1)(2n+1)/6
=n(n+1)(3n+3−2n−1)/6
=n(n+1)(n+2)/6=x^2+y^2+z^2
2(a^2+b^2+c^2)=x^2+y^2+z^2
R^2=(a/2)^2+(b/2)^2+(c/2)^2
=(x^2+y^2+z^2)/8=n(n+1)(n+2)/48
z=max(x,y,z)
{min(a/2,b/2,c/2)}^2=(x^2+y^2−z^2)/8
=(x^2+y^2+z^2)/8−z^2/4
=n(n+1)(n+2)/48−z^2/4
===================================