■アペリーの定数(その3)

[2]1/1^2+1/2^2+1/3^2+1/4^2+1/5^2+・・・=1.644934・・・=π^2/6

===================================

 1/1^2+1/2^2+1/3^2+1/4^2+1/5^2+・・・<2

であることは簡単に示せます.

(証)1/n^2<1/n(n−1)=1/(n−1)−1/n

 1/1^2+1/2^2+1/3^2+・・・<1+(1/1−1/2)+(1/2−1/3)+(1/3−1/4)+・・・<2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

  [参]小野田博一「古典数学の難問101」日本実業出版社

には,精度をあげて

 1/1^2+1/2^2+1/3^2+1/4^2+1/5^2+・・・<1.65

の証明に取り組んでいる.

(証)1/n^2<1/(n^2−1/2^2)=1/(n−1/2)−1/(n+1/2)

 これを1/5^2項以降で使うと

 1/1^2+1/2^2+1/3^2+1/4^2+1/5^2+・・・

<1/1^2+1/2^2+1/3^2+1/4^2+1/(5−1/2)−1/(5+1/2)+1/(6−1/2)−(1/6+1/2)+・・・

<1/1^2+1/2^2+1/3^2+1/4^2+1/(5−1/2)=79/48=1.64583・・・

===================================