■グレゴリー・ライプニッツ級数とオイラーの計算(その4)
(その2)に掲げたことから
(1−1/3^2)(1−1/5^2)(1−1/7^2)(1−1/9^2)・・・
は一見するとグレゴリー・ライプニッツ級数のオイラー積のように思えるかもしれないが,すべての素数を渡るのではなく,すべての奇数を渡っているので,オイラー積ではない.
グレゴリー・ライプニッツ級数のオイラー積は
(1+1/3)^-1・(1−1/5)^-1・(1+1/7)^-1・(1+−1/11)^-1・(1−1/13)^-1・・・
=(1−1/3^s+1/9^s−1/27^s+・・・)(1+1/5^s+1/25^s+・・・)(1+1/7^s+・・・)・・・
というように素数についての積の形に書くことができる.このような関係から,奇数全体についての交代級数の話が素数全体についての積の話になる.
ところで,
(1−1/3^2)(1−1/5^2)(1−1/7^2)(1−1/9^2)・・・=(1−1/3)(1+1/3)(1−1/5)(1+1/5)・・・
から
(1+1/3)^-1・(1−1/5)^-1・(1+1/7)^-1・(1−1/11)^-1・(1+1/13)^-1・・・
へと直接書き直すことはできないだろうか? 挑戦されたい.
===================================