■連分数の測度論(その18)

【1】レヴィの定数

 実数xのn項までの連分数展開pn/qnとする.ほとんどすべての実数に対して,

  (qn)^1/n→exp(π^2/12log2)=3.27582292・・

===================================

 すなわち,近似分数の分母が

  (Bn)^1/n→exp(π^2/12log2)=3.27582・・・

になることを示されているのですが,標準連分数の場合,

  α=[q1,・・・,qn]=Pn/Qn

  P0=1,P1=q1,Pn=qnPn-1+Pn-2

  Q0=0,Q1=1 ,Qn=qnQn-1+Qn-2   (n=2,3,・・・)

  PnQn-1−Pn-1Qn=(−1)^n   (n=1,2,・・・)

  PnQn-2−Pn-2Qn=(−1)^n-1qn   (n=2,3,・・・)

が成り立ちます.

 また,

  α=[q1,・・・,qn-1,qn,qn+1,・・・]

の部分列[qn,qn+1,・・・]に対して

  αn=[qn,qn+1,・・・]

なる実数αnを定めると

  α=[q1,・・・,qn-1,αn]

   =(αnPn-1+Pn-2)/(αnQn-1+Qn-2)

が証明されます.

===================================