■ソーセージ予想(その14)

 (その7)で初歩的な誤りをやらかしてしまった.

===================================

[1]単位球をm連のソーセージ状配置した場合の表面積は,

  n−1次元球の表面積・2(m−1)+n次元球の表面積=2(m−1)Sn-1+Sn

[2]辺の長さ2の多面体の頂点に単位球をおいた場合,

[a]Sn

[b]辺の長さ2のn−1次元多面体の体積・ファセット数

 正単体:2^(n-1)/2(n+1)√n/(n−1)!

 正軸体:2^(n-1)/2・2^n√n/(n−1)!

 立方体:2^(n-1)・2n

[c]二面角δを使って,

  Sn-1(π−δ)/2π・x・2

  正単体:δ=arccos(1/n)

  正軸体:δ=arccos(−(n−2)/n)

  立方体:δ=π/2

 xが辺の数になるのか,n−2次元面の数なのか,すぐにはわからないが,おそらく,辺の数でよいだろう.単体状配置の場合はどちらも(n+1,2)=n(n+1)/2になるので,問題なかったのである.

  正単体:x=n(n+1)/2

  正軸体:x=2n(n−1)

  立方体:x=n・2^n-1

正軸体と立方体のxは逆になるかもしれないが,・・・

===================================