■数とあそぶ(その17)

 πの級数公式には1/πに収束するものもある.たとえば,ラマヌジャンの1/π公式(1914年)

  1/π=2√2/99^2Σ(4k)(1103+26390k)/(4^k99^kk!)^4

は長い間証明されなかった異色の式である.収束は速い.

 私にはその意味を見抜くのさえ不可能に思える.

 ラマヌジャンの式に刺激されて,チュドノフスキーの式

  1/π=Σ(−1)^n(6n)!(163096908+6541681608n)/(3n)!(n!)^3(262537412620768000)^n+1/2

が考案されている.

===================================

【1】分割数の漸近近似式

 「分割数」とは与えられた整数にどれだけ多くの分割があるのか(4=1+1+1+1,4=3+1)という整数の分割理論のことです.整数の分割では,3=2+1と3=1+2のように足し算の順序が違うものは同じと見なすことにします.たとえば,4を分割するには非増加数列で構成した5通りの方法,4=3+1=2+2=2+1+1=1+1+1+1がありますから,p(4)=5.同様にして,5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1よりp(5)=7となります.

  p(0)=1,p(1)=1,p(2)=2,p(3)=3,p(4)=5,p(5)=7,p(6)=11,

  p(7)=15,p(8)=22,p(9)=30,p(10)=41,p(11)=56,p(12)=77,・・・

ここで,p(n)はオイラーの分割関数とも呼ばれますが,定義が簡単そうにみえるにも関わらず,易しい式で表すことはできません.また,分割関数は急激に増大します.

 p(n)を評価する問題は数論において研究されていて,1918年,ハーディーとラマヌジャンによって,円周法による漸近近似式:

  p(n) 〜 1/4n√(3)exp(π√(2n/3))

が与えられています.

 これはハーディーとラマヌジャンによる重要な結果のひとつですが,その後,分割関数はラーデマッハーによって修正され,完全な明示公式

  p(n)=1/π√(2)Σk^(1/2)Ak(n)d/dn{sinh(πλn√(2/3))/λn}

  λn=√(n-1/24),Ak(n)には1の24乗根が関係する

が与えられました(1937年).

===================================