■完全ベキ乗数列(その6)
{an}={1,4,8,9,16,25,27,32,36,・・・}
Σ1/(an−1)=Σ1/(2^k−1)+Σ1/(3^k−1)+・・・
(k≧2)
のあとは
Σ1/(5^k−1)+Σ1/(6^k−1)+
Σ1/(7^k−1)+Σ1/(10^k−1)+
Σ1/(11^k−1)+Σ1/(12^k−1)+
Σ1/(13^k−1)+Σ1/(14^k−1)+
Σ1/(15^k−1)+Σ1/(17^k−1)+
と続く.
すなわり,排他的数列
{bn}={2,3,5,6,7,11,12,13,14,17,・・・}
===================================
直接的な関係はないが
N=Πn^2/(n^2−1)=Πn/(n−1)・n/(n+1)
=2/1・2/3・3/2・3/4・・・n/(n−1)・n/(n+1)
はうまくキャンセルアウトして
N=2/1・n/(n+1)→2
===================================
[1]N=Πn^k/(n^k−1) n=2〜∞
k=2:N=2
k=3:N=3πsech(π√3/2)
k=4:N=4πcosech(π√3/2)
k=6:N=6π^2(sech(π√3/2))^2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[2]N=Π(n^k+1)/n^k n=1〜∞
k=2:N=sinh(π)/π
k=3:N=cosh(π√3/2)/π
なお,
k=4:N=sin((−1)^1/4π)sin((−1)^3/4π)/π^2
k=6:N=sin((−1)^1/6π)sin((−1)^5/6π)sinh(π)/π^3
と計算される.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[3]
Π((n^3−1)/(n^3+1)=2/3 n=2〜∞
===================================