■シンク関数の積分(その1)

 微積の学び初めに,x→0としたとき,

  sinx/x→1

に出会う.この結果は

  (sinx)’=cosx,(cosx)’=−sinx

を示すのに用いられる.

 その後,sinxのテイラー展開によって,無限級数

  sinx=x−x^3/3!+x^5/5!−x^7/7!+・・・

  sinx/x=1−x^2/3!+x^4/5!−x^6/7!+・・・

が示される.

 それでは,任意のxに対して,無限積公式

  sinx/x=cos(x/2)cos(x/4)cos(x/8)・・・

も示しておこう.

(証明)

  sinx=2sinx/2cosx/2

      =4sinx/4cosx/4cosx/2

      =8sinx/8cosx/8cosx/4cosx/2

       ・・・・・

      =2^nsinx/2^ncosx/2^n・・・cosx/2

 書き直すと

  sinx=x[sin(x/2^n)/(x/2^n)]cosx/2・・・cosx/2^n

 ここで,n→∞のとき,

  sin(x/2^n)/(x/2^n)→1

であるから,sinxの無限積表示

  sinx=xΠcosx/2^n

      =x(1−x^2/π^2)(1−x^2/4π^2)(1−x^2/9π^2)・・・

が得られる.この結果は,sinxがx=0,±π,±2π,±3π,・・・のとき,0になることに一致している.

[補]正弦積分とは,

  Si(x)=∫(0,t)sint/tdt

       =x−x^3/3・3!+x^5/5・5!−・・・

として定義される特殊関数(初等関数によって表し得ない関数)である.また,その特殊値

  Si(∞)=∫(0,∞)sint/tdt=π/2

は,ディリクレ積分と呼ばれる.

===================================