■e+πに収束する分数列(その38)

【1】e+πに収束する級数

 有理関数係数の線形な漸化式

  c0=5,c1=−1/3

  cn=−(2n−1)(2n^3−5n^2+n−1)/n(2n+1)(2n^2−3n+2)・cn-1+(2n−3)(2n^2+n+1)/n(2n+1)(2n^2−3n+2)・cn-2

 このとき,sn=Σcnは

s2=5.96667

s3=5.5619

s4=6.04802

s5=5.69271

s6=6.00179

s7=5.73533

s8=5.97065

s9=5.76012

s10=5.9506

s10000=5.85997

 最終的には

  e+π=5.85987・・・

に収束する.

===================================

  π/4=1−1/3+1/5−1/7+1/9−・・・=Σ(−1)^n/(2n+1)

  e=1+1/1!+1/2!+1/3!+1/4!+1/5!+・・・=Σ1/n!

  an=α/n!,bn=(−1)β/(2n+1)

  cn=an+bnとおくと

  an-1=nan,bn-1=−(2n+1)/(2n−1)・bn

  cn=an+bn

  cn-1=an-1+bn-1=nan−(2n+1)/(2n−1)・bn

  cn-2=an-2+bn-2=n(n−1)an+(2n+1)/(2n−3)・bn

 3式より,an,bnを消去すると

  cn=−(2n−1)(2n^3−5n^2+n−1)/n(2n+1)(2n^2−3n+2)・cn-1+(2n−3)(2n^2+n+1)/n(2n+1)(2n^2−3n+2)・cn-2

  α=1,β=4のとき,Σan=e,Σbn=π

  Σcn=e+π

 [参]吉永正彦「周期と実数の0認識問題」数学書房

===================================