■e+πに収束する分数列(その5)

 連分数とは,

  a1/(b1+a2/(b2+a3/(b3+a4/(b4+a5/b5+・・・)

のような分数を続けた式で,実用上は最初にa0+をつけた形が使われます.整数論で使われる連分数は普通,ak=1,bkが正の整数である標準連分数です.

===================================

 連分数展開が有限で終わることと有理数であることは同値です.そこで,2次方程式の解となる√nの連分数展開を求めると,たとえば

  √2=[1:2,2,2,2,・・・]

  √3=[1:1,2,1,2,1,2,1,2,・・・]

  √7=[2:1,1,1,4,1,1,1,4,・・・]

のように循環型の単純連分数に展開されることが知られています.一般に,2次の無理数(整数係数の2次方程式の解)は周期的な連分数展開をもちます(ラグランジュの定理).

 平方根を無限連分数に表す手順はわかりやすく,たとえば,1<√2<2であるから

  √2=1+(√2−1)

    =1+1/(√2+1)    2<√2+1<3

    =1+1/{2+(√2−1)}

    =1+1/{2+1/(√2+1)}

    =1+1/{2+1/(2+(√2−1)}

    =1+1/{2+1/(2+1/(√2+1)}

    =1+1/{2+1/{2+1/{2+1/{2+・・・

の手順を何度も繰り返すことにより,

  √2=[1:2,2,2,2,・・・]

ができあがります.また,黄金比φ=(1+√5)/2は,

  φ=[1:1,1,1,,1,・・・]

で表されます.黄金比φ=(1+√5)/2が,無限連分数

  φ=[1:1,1,1,,1,・・・]

や無限の入れ子の根号

  φ=√(1+√(1+√(1+√(1+・・・

で3通りにも表されるという事実は魔法のようにさえ思えます.

 ここでは,連分数展開を用いて数の集合を定義してみますが,たとえば,正の実数が無限連分数展開され,そのすべての部分商が1または2であるような実数の集合のハウスドルフ次元は0.531280506・・・であることが計算されています.

 3次以上の方程式の解,たとえば3√2の連分数展開を求めると,

  3√2=[1:3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,・・・]

の一般項は求めることができません.この展開に現れる整数に最大値があることも示すこともできないのです.

 有理数は有限連分数,無理数で代数的数の場合は無限循環連分数,超越数は無限非循環連分数になります.たとえば,超越数eの連分数展開は,

  e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,・・・]

と書け,数字の出方が自然数順になっていることがわかります.すなわち,

  e=[2;1,2,1,1,4,1,1,6,1,・・・,1,2n,1,・・・]

 πの連分数展開

  π=[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1,15,3,13,1,4,2,6,6,99,1,2,2,6,3,5,1,1,6,・・・]

にはなんの規則性も見あたらないようにみえます.もちろん,一般項は見つかっていません.10進数表現しても

  e=2.718281827459045・・・

 π=3.141592653589793・・・

eには何かパターンがありそうに見えますが,πの数の並び方には何のパターンもありません.しかし,単純連分数(分子がすべて1)に限らなければ,

  π/4=1/{1+1^2/{2+3^2/{2+5^2/{2+7^2/{2+9^2/{2+・・・}

分子には奇数の平方が並んでいるというパターンを見つけることができます.

===================================