■畳の敷き方数・再考(その2)
【1】畳の敷き方数の一般項
K(n×2)=Π(l=1~[(n+1)/2]{1+4cos^2(lπ/(n+1))}
において,n→2mと置き換えれば
K(2m×2)=K(2×2m)
=Π(k=1~m]{1+4cos^2(kπ/(2m+1))}
となる.また,n=1のとき,畳の敷き方はただ1通りであるから,
K(1×2m)=1
1+4cos^2(kπ/(2m+1))
の1はK(1×2m)=1の場合に対応していて,組み合わせ数の本質的な部分は
4cos^2(kπ/(2m+1))
と思われる.そこで,K(n×2m)を求めるには1の代わりに
4cos^2(lπ/(n+1))
を用いればよいことになる.
以上のことから,
K(n×2m)
=Π(k=1~m)Π(l=1~[(n+1)/2]{4cos^2(lπ/(n+1))+4cos^2(kπ/(2m+1))}
=2^2m[(n+1)/2]Π(k=1~m)Π(l=1~[(n+1)/2]{cos^2(lπ/(n+1))+cos^2(kπ/(2m+1))}
と考えられるのである.1が消えた理由を無理矢理こじつけたようであるが,・・・
===================================
1961年,物理学者のカステレイン,フィッシャー,テンパレイは縦横2辺の長さが任意の偶数(2m×2n)の長方形の畳の敷き方数は
K(n,m)=Π(j=1~n)Π(k=1~m){4cos^2(jπ/(2n+1))+4cos^2(kπ/(2m+1))}
であることを見いだした.
奇数の場合も含め,この敷き方数の求め方は(その1)で解説したが,この不思議な公式には興味深い性質が隠されていて,たとえば,正方形(m=n)の場合には,つねに奇数の2乗を2^n倍したものになる.
K(0,0)=1=2^0
K(1,1)=2=2^1
K(2,2)=36=2^23^2
K(3,3)=6728=2^329^2
K(4,4)=12988816=2^4901^2
===================================