■畳の敷き方数・再考(その2)

【1】畳の敷き方数の一般項

  K(n×2)=Π(l=1~[(n+1)/2]{1+4cos^2(lπ/(n+1))}

において,n→2mと置き換えれば

  K(2m×2)=K(2×2m)

 =Π(k=1~m]{1+4cos^2(kπ/(2m+1))}

となる.また,n=1のとき,畳の敷き方はただ1通りであるから,

  K(1×2m)=1

  1+4cos^2(kπ/(2m+1))

の1はK(1×2m)=1の場合に対応していて,組み合わせ数の本質的な部分は

  4cos^2(kπ/(2m+1))

と思われる.そこで,K(n×2m)を求めるには1の代わりに

  4cos^2(lπ/(n+1))

を用いればよいことになる.

 以上のことから,

  K(n×2m)

 =Π(k=1~m)Π(l=1~[(n+1)/2]{4cos^2(lπ/(n+1))+4cos^2(kπ/(2m+1))}

 =2^2m[(n+1)/2]Π(k=1~m)Π(l=1~[(n+1)/2]{cos^2(lπ/(n+1))+cos^2(kπ/(2m+1))}

と考えられるのである.1が消えた理由を無理矢理こじつけたようであるが,・・・

===================================

 1961年,物理学者のカステレイン,フィッシャー,テンパレイは縦横2辺の長さが任意の偶数(2m×2n)の長方形の畳の敷き方数は

  K(n,m)=Π(j=1~n)Π(k=1~m){4cos^2(jπ/(2n+1))+4cos^2(kπ/(2m+1))}

であることを見いだした.

 奇数の場合も含め,この敷き方数の求め方は(その1)で解説したが,この不思議な公式には興味深い性質が隠されていて,たとえば,正方形(m=n)の場合には,つねに奇数の2乗を2^n倍したものになる.

  K(0,0)=1=2^0

  K(1,1)=2=2^1

  K(2,2)=36=2^23^2

  K(3,3)=6728=2^329^2

  K(4,4)=12988816=2^4901^2

===================================