■ウィア・フェラン泡(その62)
[1]=cot(π/n)
[2]=cosec(π/n)
として,ねじれ重角錐の座標を
(H+h/2,0,0)
(h/2,1,[1])
(h/2,−1,[1])
(−h/2,0,[2])
にとる.
===================================
【1】ねじて重角錐におけるS^3/V^2比の最小化
[1]底面が辺の長さ2の正n角形である反角柱(底面積ncot(π/n),高さh)を考える.
その上に載る角錐の高さHは
H:(H+h)=cot(π/n):cosec(π/n)
Hcosec(π/n)=(H+h)・cot(π/n)
H(cosec(π/n)−cot(π/n))=hcot(π/n)
角錐の体積と側面積は
V1=2/3・ncot(π/n)・H
S1=2n・{H^2+cot^2(π/n)}^1/2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[2]反角柱の断面は2n角形で,0≦t≦1として,辺の長さは2t,2(1−t)で与えられる.中心軸からの距離は,それぞれ
t・cot(π/n)+(1−t)cosec(π/n)
(1−t)・cot(π/n)+t・cosec(π/n)
であるから,2n角形の面積は
t^2cot(π/n)+t(1−t)cosec(π/n)
+(1−t)^2cot(π/n)+t(1−t)cosec(π/n)
のn倍である.
(1−2t+2t^2)→(t−t^2+2/3・t^3|(0,1)=2/3
(2t−2t^2)→(t^2−2/3t^3)=1/3
より 反角柱の体積と側面積は
V2={2/3・cot(π/n))+1/3・cosec(π/n)}nh
S2=2n・{h^2+(cosec(π/n)−cot(π/n))^2}^1/2
===================================
[1]=cot(π/n)
[2]=cosec(π/n)
[3]=cosec(π/n)−cot(π/n)と略す.
H=h[1]/[3]
V1=2/3・n[1]・h[1]/[3]
S1=2n・{h^2[1]^2/[3]^2+[1]^2}^1/2
V2={2/3・[1]+1/3・[2]}nh
S2=2n・{h^2+[3]^2}^1/2
V=V1+V2
=2/3・nh[1]^2/[3]+{2/3・[1]+1/3・[2]}nh
V’=2/3・n[1]^2/[3]+{2/3・[1]+1/3・[2]}n
S=S1+S2
=2n・{h^2[1]^2/[3]^2+[1]^2}^1/2+2n・{h^2+[3]^2}^1/2
S’=2n・h[1]^2/[3]^2{h^2[1]^2/[3]^2+[1]^2}^-1/2+2nh{h^2+[3]^2}^-1/2
3S’V−2SV’=0
より,S^3/V^2が最小値をとるhを求めると
3S’V=3S’・{2/3・nh[1]^2/[3]+{2/3・[1]+1/3・[2]}nh}
2SV’=2S・{2/3・n[1]^2/[3]+{2/3・[1]+1/3・[2]}n}
3S’h=2S
3h{2n・h[1]^2/[3]^2{h^2[1]^2/[3]^2+[1]^2}^-1/2+2nh{h^2+[3]^2}^-1/2}=2{2n・{h^2[1]^2/[3]^2+[1]^2}^1/2+2n・{h^2+[3]^2}^1/2}
3h^2{[1]^2/[3]^2{h^2[1]^2/[3]^2+[1]^2}^-1/2+{h^2+[3]^2}^-1/2}=2{{h^2[1]^2/[3]^2+[1]^2}^1/2+{h^2+[3]^2}^1/2}
{h^2[1]^2/[3]^2+[1]^2}^1/2{h^2+[3]^2}^1/2をかけると
3h^2{[1]^2/[3]^2{h^2+[3]^2}^1/2+{h^2[1]^2/[3]^2+[1]^2}^1/2}
=2{h^2[1]^2/[3]^2+[1]^2}{h^2+[3]^2}^1/2+{h^2+[3]^2}{h^2[1]^2/[3]^2+[1]^2}^1/2}
より,hを求める.
なお,外接球もつための条件は
(h/2)^2+cosec^2(π/n)=(H+h/2)^2
である.
===================================