■基本単体の二面角(その65)

 高次元空間でいくつかの超平面による鏡像で生ずる有限群(超球面上の単体)あるいは無限離散群(ユークリッド空間内の単体)はすべて決定されています.

 無限離散群は1次元あげた有限群を考え,それが超平面上に退化した場合に相当します.

===================================

 正多角形は無限に多く存在しますが,それでは,「互いに合同な正多角形を隙間も重なりもないように並べて平面を完全に埋める仕方が何通りあるでしょうか?」この問題は昔から知られていて,それが3種類に限ることは以下のようにして証明されます.

 正多角形の中で平面をタイル張りのように隙間なく埋めつくすことができる平面充填形では,各頂点に正p角形がq面が会するとすると,正p角形の一つの内角は2(1−2/p)×90°であり,一つの頂点の回りの内角の和はこれがq個集まって四直角ですから,

  2q(1−2/p)=4,すなわち,

  1/p+1/q=1/2   (p,q≧3)

で,この条件を満たす(p,q)の組は(3,6),(4,4),(6,3)の3通りしかありません.したがって,平面充填形は正三角形,正方形,正六角形の3つだけです.このうち正方形のは碁盤,正六角形のは蜂の巣などでおなじみでしょう.

 2次元の平面の中に正多角形は無限に多くあるのに反して,3次元の空間には無限に多くの正多面体は存在しません.平面充填形は,面数が無限大となって全体が一面に広がってしまった正多面体と解釈することができますが,平面充填形の場合と同様にして,正多面体の各面を正p角形,各頂点にq面が会するとすると,頂点の周囲は4直角未満ですから,不等式

  2q(1−2/p)<4,すなわち,

  1/p+1/q>1/2   (p,q≧3)

  (p−2)(q−2)<4

が正多角形となる必要条件です.このような整数の組は(p,q)=(3,3),(3,4),(3,5),(4,3),(5,3)の5通りで,それぞれ,正4面体,正8面体,正20面体,正6面体,正12面体に対応します.

 すなわち,正多面体は正4・6・8・12・20面体の5種類あって5種類しかないことはプラトンの時代にはすでに見つけられていて,それらがプラトンの自然哲学で重要な役割を演ずるところから,正多面体はプラトンの立体(Platonic solid)とも呼ばれています.

===================================

[まとめ]

 (p,q)=(3,6),(4,4),(6,3)と(p,q)=(3,3),(3,4),(3,5),(4,3),(5,3)は似て非なるものと考えた方が良さそうです.

===================================