■ウィア・フェラン泡(その14)
(その13)で作った木工模型の体積を求めてみたい.
===================================
【1】グラミアンと平行体の体積
2つのベクトルa↑,b↑を基底とする平行体(平行四辺形)の面積は,外積は
a↑×b↑
3つのベクトルa↑,b↑,c↑を基底とする平行体(平行六面体)の体積は,スカラー三重積
(a↑×b↑)・c↑
すなわち,外積a↑×b↑とベクトルc↑の内積で与えられます.
|a↑|=a,|b↑|=bとすれば,平行四辺形の面積は,
S=absinθ
ですから,
S^2=a^2b^2(1−cos^2θ)
=|a↑|^2|b↑|^2−(a↑・b↑)^2
=|a↑・a↑ a↑・b↑|
|b↑・a↑ b↑・b↑|
同様に,平行六面体の体積は
V^2=|a↑・a↑ a↑・b↑ a↑・c↑|
|b↑・a↑ b↑・b↑ b↑・c↑|
|c↑・a↑ c↑・b↑ c↑・c↑|
で与えられます.
これらのように,内積の行列式で定義される行列式をグラムの行列式(グラミアン)といいます.平行体の面積・体積はグラミアンの平方根に等しくなるというわけです.
また,座標を使って表せば,n+1個の点の座標に(1,1,1,・・・,1)を加えて作られる(n+1)次の行列式の絶対値になります.
|S|=|1 x1 y1| |V|=|1 x1 y1 z1|
|1 x2 y2| |1 x2 y2 z2|
|1 x3 y3| |1 x3 y3 z3|
|1 x4 y4 z4|
原点が含まれるときは,
|S|=|x1 y1| |V|=|x1 y1 z1|
|x2 y2| |x2 y2 z2|
|x3 y3 z3|
のように展開されます.
なお,これらはそれぞれn次元単体の体積のn!倍になりますから,三角形面積,四面体の体積は,
S’=S/2
V’=V/6
===================================
【2】計算結果
12面体の体積は999.992
14面体の体積は1000
であった.もし,これらの体積が異なっていれば表面積を求める意味はなくなってしまうところであったが,うまく計算されている座標値といえるだろう.
===================================