■相似思考の問題? (その8)

  Π(n^2/(n^2−1)

=(2・2/1・3)(3・3/2・4)(4・4/3・5)・・・(n・n/(n−1)・(n+1))・・・

→2

[証]

N=Πn^2/(n^2−1)=Πn/(n−1)・n/(n+1)

=2/1・2/3・3/2・3/4・・・n/(n−1)・n/(n+1)

はうまくキャンセルアウトして

  N=2/1・n/(n+1)→2

===================================

  2/1・2/3・4/3・4/5・6/5・6/7・・・=π/2

[証]ウォリスの公式(1656年)である.

(2・2/1・3)(4・4/3・5)(6・6/5・7)・・・(2n・2n/(2n−1)・(2n+1))・・・

=Π2n/(2n−1)・2n/(2n+1)

=Πn/(n−1/2)・n/(n+1/2)

=Γ(1/2)Γ(3/2)/Γ(1)Γ(1)=2Γ^2(3/2)

=π/2

===================================

[おまけ]

  Π((n^3−1)/(n^3+1)=2/3   n=2〜∞

===================================