■4n+1型素数(その12)
どういう負の数−dを使った数体系Q(√−d)で,素因数分解は一意となるのでしょうか?
この答えは既に知られていて,次の9つの虚2次体Q(√d)
−d=1,2,3,7,11,19,43,67,163
に限られるというものです.このコラムをご覧の読者であれば,最初の2つ以外では半整数a,bを使って,a+b√−dを作る必要があることはおわかりでしょう(=1(mod4)).
解説によっては,一意分解性をもつ虚2次体は9個のみで,その判別式は
D=3,4,7,8,11,19,43,67,163
に限られるとも説明されています.その場合,アイゼンスタインの整数は判別式3,ガウスの整数は判別式4,クラインの整数は判別式7に相当します.
===================================
[1]クラインの整数
ベイカー・スタークの定理により,ガウス整数とアイゼンスタイン整数は一意分解性をもつことがわかりますが,それに続いて最も簡単な整数環は
λ=(−1+√−7)/2
a+bλ
です.
クライン整数は2つの単数±1のみをもち,菱形格子をなします.クライン環の特徴は,2が素因数分解されることです.
2=(−1+√−7)/2・(−1−√−7)/2
===================================