今回のコラムでは,ラマヌジャンの研究からいくつかピックアップして紹介したい.
===================================
【1】分割数
「分割数」とは与えられた整数にどれだけ多くの分割があるのか(4=1+1+1+1,4=3+1)という整数の分割理論のことです.整数の分割では,3=2+1と3=1+2のように足し算の順序が違うものは同じと見なすことにします.たとえば,4を分割するには非増加数列で構成した5通りの方法,4=3+1=2+2=2+1+1=1+1+1+1がありますから,p(4)=5.同様にして,5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1よりp(5)=7となります.
p(0)=1,p(1)=1,p(2)=2,p(3)=3,p(4)=5,p(5)=7,p(6)=11,
p(7)=15,p(8)=22,p(9)=30,p(10)=41,p(11)=56,p(12)=77,・・・
ここで,p(n)はオイラーの分割関数とも呼ばれますが,定義が簡単そうにみえるにも関わらず,易しい式で表すことはできません.
やっかいなことに,分割数はnの増加に伴って非常に速く増加し,p(50)ともなると,204226に達します.そのため,p(n)を漸近評価する問題は数論において研究されていて,1918年,ハーディーとラマヌジャンによって,(離散量でなくて連続量を扱う)円周法による漸近近似式:
p(n) 〜 1/4n√(3)exp(π√(2n/3))
が与えられています.
[補]σ(k)をkの約数の和とすると,p(n)に対する漸化式
p(n)=1/nΣσ(k)p(n-k)
が得られます.また,σ(k)の漸近的振る舞い
1/n^2Σσ(k)〜π^2/12
を用いると,nが大きい場合の分割数の漸近挙動
p(n)〜exp(π√(2n/3))/4n√3
を得ることができます.このことからp(n)は準指数関数と考えることができます(p(n)^(1/n)→1).
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
その後,分割関数はラーデマッハーによって修正され,完全な明示公式
p(n)=1/π√(2)Σk^(1/2)Ak(n)d/dn{sinh(πλn√(2/3))/λn}
λn=√(n-1/24),Ak(n)には1の24乗根が関係する
が与えられました(1937年).
ハーディーとラマヌジャンはその第一近似式を得たことになりますが,ラマヌジャンは完全な解答があると見抜いていなかったのでしょうか? このことに関して,数論学者セルバーグは,ハーディーとラマヌジャンが明示公式までたどりつけなかった原因は「二人の努力をむしろ妨げたのはハーディーが古典解析学の手法の凝りすぎていたからであって,ハーディーがラマヌジャンの直観を信じ切っていなかったため,20年後ラーデマッハーが導き出すことになる完全な明示公式を探求するだけの勇気がなかったのだという興味深いコメントを述べています.
なお,分割数を求めるには,五角数を利用したオイラーの方法があります.
p(n)-p(n-1)-p(n-2)+p(n-5)+p(n-7)-p(n-12)-p(n-15)+・・・=0^n
ただし,n=0のとき0^n=1,nが正のときは0^n=0とします.
+(-1)^kp(n-1/2k(3k-1))+(-1)^kp(n-1/2k(3k+1))
のように,符号は2つずつ組になって反転していますが,それにしても不思議な公式です.
ラマヌジャンはp(n)が満たす合同式について,披整除性
p(5n+4)=0 mod5
p(7n+5)=0 mod7
p(11n+6)=0 mod11
p(599)=0 mod5^3
p(721)=0 mod11^2
を予想し,それらを証明しています.
===================================
【2】ラマヌジャン数
ところで,分割数は,以下の公式によって代数的に定義することができます.
f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)
=Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・
すなわち,f(x)は分割関数p(n)の母関数で,p(n)はx^nの係数になっています.また,
Π(1-q^n)=Σ(-1)^mq^(m(3m-1)/2))
は,オイラーが分割関数p(n)の研究中に発見した関数等式です(1750年).
オイラー数
f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)
=Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・
と同様にして,ラマヌジャン数が定義できます.
f(x)=xΠ(1-x^n)^24=x{(1-x)(1-x^2)(1-x^3)・・・}^24
=Στ(n)x^n=τ(1)x+τ(2)x^2+τ(3)x^3+・・・
ラマヌジャンは,
Δ(z)=η(z)^24=qΠ(1-q^n)^24=Στ(n)q^n
zは虚部が正の複素数で,q=exp(2πiz)
を考え,そのフーリエ係数τ(n)を計算しました.
τ(1)=1,τ(2)=-24,τ(3)=252,τ(4)=-1472,τ(5)=4830,τ(6)=-6048,
τ(7)=-16744,τ(8)=84480,τ(9)=-113643,τ(10)=-115920,
τ(11)=534612,τ(12)=-370944,・・・
ここでも,無限積をベキ級数に展開した式(フーリエ展開)が登場しましたが,このΔ(z)は,重さ12の保型形式
Δ(az+b/cz+d)=(cz+d)^12Δ(z)
と呼ばれるものになっていて,オイラーの五角数公式の拡張(24乗版)と考えられます.
ラマヌジャン数は,オイラーの分割数のアナローグであり,
(1)mとnが素ならば,τ(m)τ(n)=τ(mn)
τ(2)*τ(3)=-6048=τ(6),τ(2)*τ(5)=-115920=τ(10)
τ(3)*τ(4)=-370944=τ(12),τ(2)*τ(9)=2727432=τ(18)
τ(4)*τ(5)=-7109760=τ(20),τ(3)*τ(7)=-4219488=τ(21)
(2)τ(p^(n+1))-τ(p^n)τ(p)=-p^11τ(p^(n-1))
(3)τ(n)=(nの約数の11乗の総和) (mod 691)
など,驚くような性質をもっています.
また,τ(p)はpが増加するとき,急激に増加するのですが,1974年,ドリーニュによって,ラマヌジャン予想(ハッセの定理のアナローグ),
|τ(p)|<2p^(11/2)
が証明されています.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
保型形式が最初に現れたのは,1750年のオイラーによる五角数定理
Π(1-q^n)=Σ(-1)^mq^(m(3m-1)/2)) m(3m-1)/2は五角数
ですが,これを3乗した形の展開結果はかなり簡単になり,ヤコビの公式(1829年)
Π(1-q^n)^3=Σ(-1)^m(2m+1)q^((m^2+m)/2) (m^2+m)/2は三角数
が得られます.
また,ヤコビの公式を経て,ラマヌジャンの保型形式論の時代(24乗の場合)に突入します.
===================================
【3】ロジャース・ラマヌジャン恒等式
(a)オイラーの五角数定理(1750年)
Π(1-q^n)=Σ(-1)^mq^(m(3m-1)/2)) n:1~∞,m:-∞~∞,m(3m-1)/2は五角数
(b)ヤコビの三角数定理(1829年)
Π(1-q^n)^3=Σ(-1)^m(2m+1)q^((m^2+m)/2) n:1~∞,m:0~∞,(m^2+m)/2は三角数
はヤコビの三重積公式を使うとあっさり証明できる.まず,それをみていくことにしよう.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[1]ヤコビの3重積公式
(a;q)n=(1-a)(1-aq)・・・(1-aq^(n-1))=Π(1-aq^k)
なる記号を導入すると
(q;q)n=(1-q)(1-q^2)・・・(1-q^n)=Π(1-q^k)
になるが,ヤコビの3重積公式
Σz^nq^(n(n+1)/2)=Π(1-q^n)(1+zq^n)(1+z^(-1)q^(n-1))
は
(x;q)∞(q/x;q)∞(q;q)∞=Σ(-1)^m・q^(m(m-1)/2)・x^m x=-z
と表現される.
[2]ヤコビの3重積公式において,qをすべてq^3に置き換え,x=qとすれば,左辺はΠ(1-q^3n)(1-q^3n-1)(1-q^3n-2)=Π(1-q^n)=(q;q)∞となり,
Π(1-q^n)=Σ(-1)^m・q^(m(3m+1)/2) (オイラーの5角数定理)
と表される.
[3]また,qをすべてq^2に置き換え,x=qとすれば,左辺は
Π(1-q^2n)(1-q^2n-1)^2
ここで,異なる数への分割と奇数への分割が同数あるという結果に対応する
Π(1-q^2n-1)=Π1/(1+q^n)
より,
Π(1-q^n)/(1+q^n)=Σ(-1)^m・q^(m^2)
[4]今度はx=−qとすれば,(-1;q)∞=2Π(1+q^n)より,左辺は
2Π(1-q^2n)(1+q^n-1)=2Π(1-q^2n)/(1-q^2n-1)
右辺はΣ(-∞~∞)q^(m(m+1)/2)であるが,m(m+1)/2はm=-1/2について対称であるから和を取る範囲をm:-∞~∞からm:0~∞に狭めることができて
Σ(-∞~∞)q^(m(m+1)/2)=2Σ(0~∞)q^(m(m+1)/2)
これより
Π(1-q^2n)/(1-q^2n-1)=Σq^(m(m+1)/2) m:0~∞
[5]x=δとすれば,
(x;q)∞(q/x;q)∞(q;q)∞=(1-δ)(δq;q)∞(q/δ;q)∞(q;q)∞
Σ(-1)^m・q^(m(m-1)/2)・x^m=Σ(1~∞)(-1)^m・q^(m(m-1)/2)・(δ^m-δ^-m+1)=Σ(0~∞)(-1)^m+1・q^(m(m+1)/2)・δ^-m(δ^2m+1-1)
両辺を(1-δ)で割り,δ→1とすれば,
左辺→Π(1-q^n)^3
右辺→Σ(0~∞)(-1)^m-1・(2m+1)q^(m(m+1)/2)
より,
Π(1-q^n)^3=Σ(-1)^m(2m+1)q^((m^2+m)/2) (ヤコビの3角数定理)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[6]ロジャース・ラマヌジャン恒等式
ヤコビの3重積公式はテータ関数そのものを表しているのであって,これから
Σ(-1)^n・q^(n^2)=(q;q)∞/(-q;q)∞
Σq^(n(n+1)/2)=(q^2;q^2)∞/(q;q^2)∞
Σq^(k^2)/(q;q)k=1/(q;q^5)∞(q^4;q^5)∞
Σq^(k(k+1))/(q;q)k=1/(q^2;q^5)∞(q^3;q^5)∞
Σq^(k^2)/(q;q)2k=1/(q;q^2)∞(q^4;q^20)∞(q^16;q^20)∞
Σq^(k(k+2))/(q;q)2k+1=1/(q;q^2)∞(q^8;q^20)∞(q^12;q^20)∞
Σq^(k^2)/(q;q)k(q;q)n-k=Σ(-1)^k・q^{(5k^2-k)/2}/(q;q)n-k(q;q)n+k
Σ2q^(k^2)/(q;q)k(q;q)n-k=Σ(-1)^k・(1+q^k)q^{(5k^2-k)/2}/(q;q)n-k(q;q)n+k
などの恒等式が得られる.
このうち,後6者のq恒等式
Σq^(k^2)/(q;q)k=1/(q;q^5)∞(q^4;q^5)∞ (第1恒等式)
Σq^(k(k+1))/(q;q)k=1/(q^2;q^5)∞(q^3;q^5)∞ (第2恒等式)
Σq^(k^2)/(q;q)2k=1/(q;q^2)∞(q^4;q^20)∞(q^16;q^20)∞
Σq^(k(k+2))/(q;q)2k+1=1/(q;q^2)∞(q^8;q^20)∞(q^12;q^20)∞
Σq^(k^2)/(q;q)k(q;q)n-k=Σ(-1)^k・q^{(5k^2-k)/2}/(q;q)n-k(q;q)n+k
Σ2q^(k^2)/(q;q)k(q;q)n-k=Σ(-1)^k・(1+q^k)q^{(5k^2-k)/2}/(q;q)n-k(q;q)n+k
はロジャース・ラマヌジャン恒等式と呼ばれるものの例である.
オイラー数は非制限分割数であるが,分割の構成数の差が2以上という制限を設けた分割と構成数が5n+1または5n+4の分割は恒に等しいというののが
Σq^(k^2)/(q;q)k=1/(q;q^5)∞(q^4;q^5)∞
すなわち
1+q/(1-q)+q^4/(1-q)(1-q^2)++q^9/(1-q)(1-q^2)(1-q^3)+・・・
=1/(1-q)(1-q^4)(1-q^6)(1-q^9)(1-q^11)(1-q^14)(1-q^19)・・・
である.
これらの分割恒等式は無名の数学者ロジャーズ(1894),また彼とは独立にラマヌジャン(1913)によって得られた.ロジャース・ラマヌジャン恒等式は,最初ロジャースにより発見されたのであるが,誰の興味も惹かず忘れ去られていたところ,ラマヌジャンにより別証明が与えられたというわけである.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[補]分割恒等式
任意の正の整数に対して,ある一定の条件を満たす分割と別の分割が同数存在するという主張を分割恒等式といいます.1948年,オイラーは異なる数への分割と奇数への分割が同数あるという注目すべき結果を証明しています.例えば5を異なる数に分割するのは5,4+1,3+2の3通り,奇数に分割するのは5,3+1+1,1+1+1+1+1の3通りというわけです.
オイラーの分割恒等式が最初のものですが,分割恒等式はいくらでも存在し,ここに掲げたもの以外にも多くの予期せぬ分割恒等式が存在するのです.
[1]ロジャーズ・ラマヌジャンの第1恒等式
「1の位が1,4,6,9の数への分割と各因子の差が2以上ある分割とは同数ある.」
1の位が1,4,6,9の数とはmod5で±1と合同になる整数のことです.例えば5を1,4,6,9に分割するのは4+1,1+1+1+1+1の2通り,各因子の差が2以上ある分割は5,4+1の2通り.
[2]ロジャーズ・ラマヌジャンの第2恒等式
「1の位が2,3,7,8の数への分割と因子は2以上で各因子の差が2以上ある分割とは同数ある.」
これはmod5で±2と合同になる整数のことです.例えば5を2,3,7,8に分割するのは3+2の1通り,因子は2以上で各因子の差が2以上ある分割は5の1通り.
[3]シューアの分割恒等式
「mod6で±1と合同になる整数への分割と,各因子の差が3以上あり,連続する3の倍数を含まないような分割とは同数ある.」
例えば5をmod6で±1と合同になる整数に分割するのは5の1通り,各因子の差が3以上あり,連続する3の倍数を含まないような分割は5の1通り.
ロジャーズ・ラマヌジャンの第1恒等式の母関数は
Σq(n)x^n=Π1/(1-x^(5n-4))(1-x^(5n-1)
第2恒等式では
Σq(n)x^n=Π1/(1-x^(5n-3))(1-x^(5n-2)
となるのですが,ロジャース・ラマヌジャン恒等式にはやさしい証明は存在せず,q2項係数とヤコビの3重積公式を用いて証明することができます.
これらの分割恒等式は狭い範囲の興味の対象にすぎないと思われるかもしれない,もし,物理状態がn個の基本粒子の分割に関係しているとすると,驚くほど深い物理学への応用をもっていることが理解されるだろう.実際,整数の分割問題は,現在では,統計力学(Maxwell-Boltzmann統計,Bose-Einstein統計,Fermi-Dirac統計)など様々な分野で実際的な問題を解決するのに用いられている.
ロジャース・ラマヌジャン型の恒等式も数論とのみ結びついていると考えられていたが,いまとなっては組合せ論を介して数理物理の計算に当たり前のように現れてくることが知られている.
===================================