■ウィア・フェラン泡(その7)

 (その6)より,

  捻れのため,稜面距離になると思われるが,12.2474→無意味となった.それでは,

  捻れのため,稜面距離になると思われるが,11.0916は意味をなすだろうか?

===================================

 直線

  (x−x1)/(x2−x1)=(y−y1)/(y2−y1)=(z−z1)/(z2−z1)上の点(x,y,z)と原点の距離の2乗は,x^2+y^2+z^2である.

  (y−y1)=(y2−y1)/(x2−x1)・(x−x1)=○/□・(x−x1)

  (z−z1)=(z2−z1)/(x2−x1)・(x−x1)=△/□・(x−x1)

を代入すると,

  x^2+y^2+z^2

=x^2+{○/□・x−○/□・x1+y1}^2+{△/□・x−△/□・x1+z1}^2

={1+(○/□)^2+(△/□)^2}x^2−2{○/□ (○/□・x1−y1)+△/□ (△/□・x1−z1)}x+(○/□・x1−y1)^2+(△/□・x1−z1)^2}

 これを最小とするxは

x={○/□ (○/□・x1−y1)+△/□ (△/□・x1−z1)}/{{1+(○/□)^2+(△/□)^2}

  x^2+y^2+z^2

={○/□ (○/□・x1−y1)+△/□ (△/□・x1−z1)}^2/{{1+(○/□)^2+(△/□)^2}

−2{○/□ (○/□・x1−y1)+△/□ (△/□・x1−z1)}^2/{{1+(○/□)^2+(△/□)^2}

+(○/□・x1−y1)^2+(△/□・x1−z1)^2

=−{○/□ (○/□・x1−y1)+△/□ (△/□・x1−z1)}^2/{{1+(○/□)^2+(△/□)^2}

+(○/□・x1−y1)^2+(△/□・x1−z1)^2}

=−{○/□ (○/□・x1−y1)+△/□ (△/□・x1−z1)}^2+{{1+(○/□)^2+(△/□)^2}(○/□・x1−y1)^2+(△/□・x1−z1)^2}

/{{1+(○/□)^2+(△/□)^2}

=−2○/□ (○/□・x1−y1)△/□ (△/□・x1−z1)+(○/□・x1−y1)^2+(△/□・x1−z1)^2

/{{1+(○/□)^2+(△/□)^2}

分母・分子に□^2をかけると

  x^2+y^2+z^2

=−2○△(○/□・x1−y1)(△/□・x1−z1)+□^2(○/□・x1−y1)^2+□^2(△/□・x1−z1)^2

/{○^2+△^2+□^2}

===================================

  x^2+y^2+z^2

=−2○△(○△/□^2x1^2−○/□x1z1−△/□x1y1^2+y1z1)+○^2x1^2−2○□x1y1+□^2y1^2+△^2x1^2−2△□x1z1+□^2z1^2

/{○^2+△^2+□^2}

=−2(○△)^2(x1/□)^2+2(○△)^2(x1/□)(z1/△)+2(○△)^2(x1/□)(y1/○)−2(○△)^2(y1/○)(z1/△)+(○□)^2(x1/□)^2−2(○□)^2(x1/□)(y1/○)+(○□)^2(y1/○)^2+(△□)^2(x1/□)^2−2(△□)^2(x1/□)(z1/△)+(△□)^2(z1/△)^2

/{○^2+△^2+□^2}

=−2(○△)^2(x1/□)^2+(○□)^2(x1/□)^2+(○□)^2(y1/○)^2+(△□)^2(x1/□)^2+(△□)^2(z1/△)^2

+2(○△)^2(x1/□)(z1/△)+2(○△)^2(x1/□)(y1/○)−2(○△)^2(y1/○)(z1/△)−2(○□)^2(x1/□)(y1/○)−2(△□)^2(x1/□)(z1/△)

/{○^2+△^2+□^2}

複雑になったので,次回の宿題としたい.

===================================