■n次元平行多面体数(その132)

【1】ルート系

 平面を鏡映三角形で埋めつくす問題を一般の次元に拡張して,R^nの単体に置き換えて得られるベクトルの集合が一般の階数のルート系である.ルート系の分類は,それ自体大変面白いものらしいのであるが,既約ルート系の同型類には,A型からG型までのアルファベットに,添字として階数をつけた名前が付いていて,E8型ルート系などと呼ぶ習慣になっている.

 すなわち,ルートは鏡映を与えるベクトルとして理解することができるのであるが,8次元ユークリッド空間において,8次元単体(4面体の拡張)を鏡映したものからなるモザイク模様に対してベクトルの集合を考えることによって,たとえば,E8型ルート系が得られるというわけである.

 それによれば,階数nの既約ルート系は,Ak(k≧1),Bk(k≧2),Ck(k≧3),Dk(k≧4),E6,E7,E8,F4,G2の型のいずれかであり,既約ルート系の分類の基づいて,単純リー群を分類すると9つの型があり,それらはA,B,C,Dと名づけられた4つの古典型とE6,E7,E8,F4,G2と名づけられた5つの例外型であった(カルタンの分類定理).

 ルート系(リー型の単純群)はA型からG型まで7種類あるとしてよく,4つの古典群,5系列の例外群,さらにそのうちで対称性をもつA,D,E6,D4の4系列,疑似対称性をもつB2,G2,F4の3系列で16系列に細分することができる.

 n次元正単体とn次元立方体の対称群は,それぞれAn-1,Bn(Cn)で表されるのだが,24胞体は1つの例外型対称群F4をもつことが知られている.24胞体は単体以外の唯一の自己双対な正則胞体であるという事実がF4と関係しているらしく,この点もまた注目すべきものである.

===================================